Brain Dynamics and Motor Behavior: A Case for Efficiency and Refinement for Superior Performance

in Kinesiology Review
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $41.00

1 year subscription

USD $54.00

Student 2 year subscription

USD $77.00

2 year subscription

USD $101.00

The paper presents a theoretical perspective on brain activity that characterizes expert cognitive-motor performance grounded in neural and psychomotor efficiency. Evidence for the position is derived from several different measurement tools (EEG, ERPs, fMRI, EEG coherence) based on empirical studies of (1) expert-novice contrasts, (2) changes in the brain after practice, and (3) motor performance under conditions of mental stress. The impact of mental stress on brain processes during motor performance is then discussed followed by a model of the hypothesized central neural responses to emotion-eliciting events to explain resilience to stress and the ability to “perform under pressure” as observed in high-performing athletes. An overall explanation is offered of the cascade of events that link the perception of the environment in which the performance occurs to the peripheral process of motor unit recruitment and the resultant quality of movement. This integrative perspective on human performance considers multiple levels of explanation including the psychology of sport performance, cognitive-motor neuroscience, and basic biomechanics to understand the kinematic qualities of movement and the effort cost involved.

Hatfield is with the Cognitive-Motor Neuroscience Laboratory, Department of Kinesiology, School of Public Health and the Neuroscience and Cognitive Science Program, University of Maryland at College Park, College Park, MD.

Address author correspondence to Bradley D. Hatfield at bhatfiel@umd.edu.
Kinesiology Review
Article Sections
References
  • BeilockS. (2010). Choke. New York, NY: Simon and Schuster, Inc.

  • CarrollJ.M. (1999). Red Grange and the rise of modern football. Urbana, IL: University of Illinois Press.

  • CostanzoM.E.VanMeterJ.W.JanelleC.M.BraunA.MillerM.W.OldhamJ.HatfieldB.D. (2016). Neural efficiency in expert cognitive-motor performers during affective challenge. Journal of Motor Behavior 48(6) 573588. PubMed doi:10.1080/00222895.2016.1161591

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DanielsJ.T. (1985). A physiologist’s view of running economy. Medicine & Science in Sports & Exercise 17(3) 332338. doi:10.1249/00005768-198506000-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeenyS.P.HauflerA.J.SafferM. & HatfieldB.D. (2009). Electroencephalographic coherence during visuomotor performance: A comparison of cortico-cortical communication in experts and novices. Journal of Motor Behavior 41(2) 106116. PubMed doi:10.3200/JMBR.41.2.106-116

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeenyS.P.HillmanC.H.JanelleC.M. & HatfieldB.D. (2003). Cortico-cortical communication and superior performance in skilled marksman: An EEG coherence analysis. Journal of Exercise and Sport Psychology 25188204. doi:10.1123/jsep.25.2.188

    • Crossref
    • Search Google Scholar
    • Export Citation
  • deVriesH.A. (1968). Efficiency of electrical activity as a physiological measure of the functional state of muscle tissue. American Journal of Physical Medicine 471022. PubMed

    • Search Google Scholar
    • Export Citation
  • EhrlichmannH. & WienerM.S. (1980). EEG asymmetry during covert mental activity. Psychophysiology 17228235. doi:10.1111/j.1469-8986.1980.tb00139.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FittsP.M. & PosnerM.I. (1967). Human performance. Belmont, CA: Brooks/Cole.

  • GallicchioG.CookeA. & RingC. (2017). Practice makes efficient: Cortical alpha oscillations are associated with improved golf putting performance. Sport Exercise and Performance Psychology 6(1) 89102. doi:10.1037/spy0000077

    • Search Google Scholar
    • Export Citation
  • HaririA.R.MattayV.S.TessitoreA.KolachanaB.FeraF.GoldmanD.WeinbergerD.R. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science 297400403. PubMed doi:10.1126/science.1071829

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HatfieldB.D.CostanzoM.E.GoodmanR.N.LoL.-C.OhH.RietschelJ.C.HauflerA.J. (2013). The influence of social evaluation on cerebral cortical activity and motor performance: A study of “Real-Life” competition. International Journal of Psychophysiology 90(2) 240249. PubMed doi:10.1016/j.ijpsycho.2013.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HatfieldB.D.HauflerA.J.HungT. & SpaldingT.W. (2004). Electroencephalographic studies of skilled psychomotor performance. Journal of Clinical Neurophysiology 21(3) 144156. doi:10.1097/00004691-200405000-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HatfieldB.D. & HillmanC.H. (2001). The psychophysiology of sport: A mechanistic understanding of the psychology of superior performance. In R.N. SingerC.H. Hausenblas & C.M. Janelle (Eds.) Handbook of sport psychology (2nd ed. pp. 362386). New York, NY: John Wiley & Sons, Inc.

    • Search Google Scholar
    • Export Citation
  • HatfieldB.D. & KerickS.E. (2007). The psychology of superior sport performance: A cognitive and affective neuroscience perspective. In G. Tenenbaum & R.C. Eklund (Eds.) Handbook of sport psychology (3rd ed. pp. 84109). New York, NY: John Wiley & Sons, Inc.

    • Search Google Scholar
    • Export Citation
  • HatfieldB.D.LandersD.M. & RayW.J. (1984). Cognitive processes during self-paced motor performance: An electroencephalographic profile of skilled marksmen. Journal of Sport Psychology 64259. doi:10.1123/jsp.6.1.42

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HauflerA.J.SpaldingT.W.Santa MariaD.L. & HatfieldB.D. (2000). Neuro-cognitive activity during a self-paced visuospatial task: Comparative EEG profiles in marksmen and novice shooters. Biological Psychology 53131160. doi:10.1016/S0301-0511(00)00047-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HauflerA.J.SpaldingT.W.Santa MariaD.L. & HatfieldB.D. (2002). Erratum to “Neuro-cognitive activity during a self-paced visuospatial task: Comparative EEG profiles in marksmen and novice shooters.” Biological Psychology 598788. doi:10.1016/S0301-0511(01)00122-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KerickS.E.DouglassL.W. & HatfieldB.D. (2004). Cerebral cortical adaptations associated with visuomotor practice. Medicine & Science in Sports & Exercise 36(1) 118129. PubMed doi:10.1249/01.MSS.0000106176.31784.D4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KitazawaS.GotoT. & UrushiharaY. (1993). Quantitative evaluation of reaching movements in cats with and without cerebellar lesions using normalized integral jerk. In N. ManoI. Hamada & M.R. DeLong (Eds.) Role of the cerebellum and basal ganglia in voluntary movement (pp. 1119). Tokyo, Japan: Elsevier Science.

    • Search Google Scholar
    • Export Citation
  • LangP.J.BradleyM.M. & CuthbertB.N. (1997). International Affective Picture System (IAPS): Technical manual and affective ratingsGainesville, FL: The Center for the Study of Emotion and Attention.

    • Search Google Scholar
    • Export Citation
  • LayB.S.SparrowW.A.HughesK.M. & O’DwyerN.J. (2002). Practice effects on coordination and control, metabolic energy expenditure, and muscle activation. Human Movement Science 21807830. PubMed doi:10.1016/S0167-9457(02)00166-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MastersR.M. & MaxwellJ.P. (2008). The theory of reinvestment. International Review of Sport and Exercise Psychology 1(2) 160183. doi:10.1080/17509840802287218

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MiltonJ.SolodkinA.HlustikP. & SmallS.L. (2007). The mind of expert motor performance is cool and focused. Neuroimage 35(2) 804813. PubMed doi:10.1016/j.neuroimage.2007.01.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • OchsnerK.N. & GrossJ.J. (2005). The cognitive control of emotion. Trends in Cognitive Neuroscience 9242249. doi:10.1016/j.tics.2005.03.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OchsnerK.N. & GrossJ.J. (2008). Cognitive emotion regulation insights from social cognitive and affective neuroscience. Current Directions in Psychological Science 17(2) 153158. doi:10.1111/j.1467-8721.2008.00566.x

    • Search Google Scholar
    • Export Citation
  • OhH.GentiliR.J.CostanzoM.E.GoodmanR.N.LoL.RietschelJ.C.HatfieldB.D. (2013 July). Understanding brain connectivity patterns during motor performance under social-evaluative competitive pressure. In D.D. Schmorrow & C.M. Fidopiastis (Eds.) Foundations of augmented cognition. Lecture Notes in Computer Science Vol. 8027. Proceedings of the Human-Computer Interaction (HCI) Conference Las Vegas NV (pp. 361370). Berlin: Springer.

    • Search Google Scholar
    • Export Citation
  • PicardN.MatsuzakaY. & StrickP.L. (2013). Extended practice of a motor skill is associated with reduced metabolic activity in M1. Nature Neuroscience 16(9) 13401347. doi:10.1038/nn.3477

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RietschelJ.C.McDonaldC.G.GoodmanR.N.MillerM.M.Jones-LushL.M.WittenbergG.F. & HatfieldB.D. (2014). Psychophysiological support of increasing attentional reserve during the development of a motor skill. Biological Psychology 103349356. doi:10.1016/j.biopsycho.2014.10.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SelyeH. (1976). The stress of life. New York, NY: McGraw-Hill.

  • SparrowW.A. (2000). Energetics of human activity. Champaign, IL: Human Kinetics.

  • Van GemmertA.W. & Van GalenG.P. (1997). Stress, neuromotor noise, and human performance: A theoretical perspective. Journal of Experimental Psychology: Human Perception and Performance 23(5) 12991313. PubMed doi:10.1037//0096-1523.23.5.1299

    • Search Google Scholar
    • Export Citation
  • van MierH.I.PerlmutterJ.S. & PetersenS.E. (2004). Functional changes in brain activity during acquisition and practice of movement sequences. Motor Control 8(4) 500520. PubMed doi:10.1123/mcj.8.4.500

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WeinbergR.S. & HuntV.V. (1976). The interrelationships between anxiety, motor performance and electromyography. Journal of Motor Behavior 8219224. doi:10.1080/00222895.1976.10735075

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WilliamsJ.M. & KraneV. (1998). Psychological characteristics of peak performance. In J.M. Williams (Ed.) Applied sport psychology (pp. 158170). Mountain View, CA: Mayfield.

    • Search Google Scholar
    • Export Citation
  • ZhuF.F.PooltonJ.M.WilsonM.R.MaxwellJ.P. & MastersR.S.W. (2011). Neural co-activation as a yardstick of implicit motor learning and the propensity for conscious control of movement. Biological Psychology 87(1) 6673. PubMed doi:10.1016/j.biopsycho.2011.02.004

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 78 78 45
Full Text Views 4 4 2
PDF Downloads 1 1 1
Altmetric Badge
PubMed
Google Scholar