No Vertical Visual Field Asymmetry in Online Control: Evidence from Reaching in Depth

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

We sought to determine whether a putative lower-visual field (loVF) advantage for projections to the visuomotor networks of the dorsal visual pathway influences online reaching control. Participants reached to 3-dimensional depth targets presented in the loVF and upper-visual field (upVF) in binocular and monocular visual conditions, and when online vision was available (i.e., closed-loop) or unavailable (i.e., open-loop). To examine the degree to which responses were controlled online we computed the proportion of variance (R2) explained by the spatial position of the limb at distinct stages in the reaching trajectory relative to a response’s ultimate movement endpoint. Results showed that binocular and closed-loop reaches exhibited shorter movement times and more online corrections (i.e., smaller R2 values) than their monocular and open-loop counterparts. Notably, however, loVF and upper-visual field reaches exhibited equivalent performance metrics across all experimental conditions. Accordingly, results provide no evidence of a loVF advantage for online reaching control to 3-dimensional targets.

Campbell and Heath are with the School of Kinesiology, University of Western Ontario, London, Ontario, Canada. Rossit is with the Dept. of Psychology, University of East Anglia, Norwich, United Kingdom. Heath is also with the Program in Neuroscience, University of Western Ontario, London, Ontario, Canada.

Address author correspondence to Matthew Heath at mheath2@uwo.ca.
Motor Control
Article Sections
References
  • BinstedG. & HeathM. (2005). No evidence of a lower visual field specialization for visuomotor control. Experimental Brain Research 1628994. PubMed ID: 15517212 doi:10.1007/s00221-004-2108-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrennerE. & Van DammeW.J.M. (1998). Judging distance from ocular convergence. Vision Research 38493498. PubMed ID: 9536373 doi:10.1016/S0042-6989(97)00236-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrownL.E.HalpertB.A. & GoodaleM.A. (2005). Peripheral vision for perception and action. Experimental Brain Research 16597106. PubMed ID: 15940498 doi:10.1007/s00221-005-2285-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CoullJ.WeirP.L.TremblayL.WeeksD.J. & ElliottD. (2000). Monocular and binocular vision in the control of goal-directed movement. Journal of Motor Behavior 32(4) 347360. PubMed ID: 11114228 doi:10.1080/00222890009601385

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CurcioC. & AllenK. (1990). Topography of ganglion cells in human retina. Journal of Comparative Neurology 300525. PubMed ID: 2229487 doi:10.1002/cne.903000103

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CurcioC.A.SloanK.R.PackerO.HendricksonA.E. & KalinaR.E. (1987). Distribution of cones in human and monkey retina: Individual variability and radial asymmetry. Science 236579582. PubMed ID: 3576186 doi:10.1126/science.3576186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DanckertJ. & GoodaleM.A. (2001). Superior performance for visually guided pointing in the lower visual field. Experimental Brain Research 137303308. PubMed ID: 11355377 doi:10.1007/s002210000653

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DanckertJ. & GoodaleM.A. (2003). Ups and downs in the visual control of action. In S.H. Johnson-Frey (Ed.) Taking action: Cognitive neuroscience perspectives on intentional acts (pp. 2964). Cambridge, MA: MIT Press.

    • Search Google Scholar
    • Export Citation
  • DijkermanH.C. & MilnerA.D. (1998). The perception and prehension of objects oriented in the depth plane. II. Dissociated orientation functions in normal subjects. Experimental Brain Research 118408414. PubMed ID: 9497147 doi:10.1007/s002210050294

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DijkermanH.C.MilnerA.D. & CareyD.P. (1996). The perception and prehension of objects oriented in the depth plane. I. Effects of visual form agnosia. Experimental Brain Research 112442451. PubMed ID: 9007546 doi:10.1007/BF00227950

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ElliottD.HelsenW.F. & ChuaR. (2001). A century later: Woodworth’s (1899) two-component model of goal-directed aiming. Psychological Bulletin 127342357. PubMed ID: 11393300 doi:10.1037/0033-2909.127.3.342

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FittsP.M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47381391. PubMed ID: 13174710 doi:10.1037/h0055392

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FittsP.M. & PetersonJ.R. (1964). Information capacity of discrete motor responses. Journal of Experimental Psychology 67103112. PubMed ID: 14114905 doi:10.1037/h0045689

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FlandersM.Helms TilleryS. & SoechtingJ. (1992). Early stages in a sensorimotor transformation. Behavioral and Brain Sciences 15309320. doi:10.1017/S0140525X00068813

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GanK. & HoffmannE. (1988). Geometric conditions for ballistic and visually controlled movements. Ergonomics 31829839. PubMed ID: 3402428 doi:10.1080/00140138808966724

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GoodaleM.A. (2011). Transforming vision into action. Vision Research 5115671587. PubMed ID: 20691202 doi:10.1016/j.visres.2010.07.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HeathM. (2005). Role of limb and target vision in the online control of memory-guided reaches. Motor Control 9281309. PubMed ID: 16239717 doi:10.1123/mcj.9.3.281

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HeathM.NeelyK. & KrigolsonO. (2008). Response modes influence the accuracy of monocular and binocular reaching movements. Motor Control 12252266. PubMed ID: 18698109 doi:10.1123/mcj.12.3.252

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HeathM.NeelyK.A.KrigolsonO. & BinstedG. (2010). Memory-guided reaching: What the visuomotor system knows and how long it knows it. In D. Elliott & M. Khan (Eds.) Vision and goal-directed movement: Neurobehavioural perspectives (pp. 7997). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • HeathM.WeilerJ.MarriottK.A.ElliottD. & BinstedG. (2011). Revisiting Fitts and Peterson (1964): Width and amplitude manipulations to the reaching environment elicit dissociable movement times. Canadian Journal of Experimental Psychology 65259268. PubMed ID: 21728407 doi:10.1037/a0023618

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HeathM.WestwoodD.A. & BinstedG. (2004). The control of memory-guided reaching movements in peripersonal space. Motor Control 876106. PubMed ID: 14973339 doi:10.1123/mcj.8.1.76

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HuB. & KnillD.C. (2011). Binocular and monocular depth cues in online feedback control of 3D pointing movement. Journal of Vision 11(7) 2323. doi:10.1167/11.7.23

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JohanssonJ.SeimyrG.Ö. & PansellT. (2015). Eye dominance in binocular viewing conditions. Journal of Vision 15(9) 2117. doi:10.1167/15.9.21

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KeppelG. (1991). Design and analysis: A researcher’s handbook (3rd ed.). Englewood Cliffs, NJ: Prentice Hall.

  • KhanM.A.ElliotD.CoullJ.ChuaR. & LyonsJ. (2002). Optimal control strategies under different feedback schedules: Kinematic evidence. Journal of Motor Behavior 344557. PubMed ID: 11880249 doi:10.1080/00222890209601930

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KhanM.A.FranksI.M.ElliottD.LawrenceG.P.ChuaR.BernierP.M.WeeksD.J. (2006). Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Neuroscience and Biobehavioral Reviews 3011061121. PubMed ID: 16839604 doi:10.1016/j.neubiorev.2006.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KhanM.A. & LawrenceG.P. (2005). Differences in visuomotor control between the upper and lower visual fields. Experimental Brain Research 164395398. PubMed ID: 15991032 doi:10.1007/s00221-005-2325-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KrigolsonO. & HeathM. (2006). A lower visual field advantage for endpoint stability but no advantage for online movement precision. Experimental Brain Research 170127135. PubMed ID: 16501960 doi:10.1007/s00221-006-0386-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LiuT.HeegerD.J. & CarrascoM. (2006). Neural correlates of the visual vertical meridian asymmetry. Journal of Vision 6(11) 1212. PubMed ID: 17209736 doi:10.1167/6.11.12

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MarottaJ.J.BehrmannM. & GoodaleM.A. (1997). The removal of binocular cues disrupts the calibration of grasping in patients with visual form agnosia. Experimental Brain Research 116113121. PubMed ID: 9305820 doi:10.1007/PL00005731

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MelmothD.R. & GrantS. (2006). Advantages of binocular vision for the control of reaching and grasping. Experimental Brain Research 171371388. PubMed ID: 16323004 doi:10.1007/s00221-005-0273-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MeyerD.E.AbramsR.A.KornblumS.WrightC.E. & SmithJ.E.K. (1988). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review 95340370. PubMed ID: 3406245 doi:10.1037/0033-295X.95.3.340

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OldfieldR.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 997113. PubMed ID: 5146491 doi:10.1016/0028-3932(71)90067-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PedhazurE.J. (1997). Multiple regression in behavioral research. Orlando, FL: Harcourt Brace.

  • PisellaL.GréaH.TiliketeC.VighettoA.DesmurgetM.RodeG.RossettiY. (2000). An “automatic pilot” for the hand in human posterior parietal cortex: Toward reinterpreting optic ataxia. Nature Neuroscience 3729736. PubMed ID: 10862707 doi:10.1038/76694

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PortinK. & HariR. (1999). Human parieto-occipital visual cortex: Lack of retinotopy and foveal magnification. Proceedings of the Royal Society B: Biological Sciences 266981985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PortinK.VanniS.VirsuV. & HariR. (1999). Stronger occipital cortical activation to lower than upper visual field stimuli. Neuromagnetic recordings. Experimental Brain Research 124287294. PubMed ID: 9989434 doi:10.1007/s002210050625

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PrevicF.H. (1990). Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications. Behavioral and Brain Sciences 13519542. doi:10.1017/S0140525X00080018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PrevicF.H. (1998). The neuropsychology of 3-D space. Psychological Bulletin 124123164. PubMed ID: 9747184 doi:10.1037/0033-2909.124.2.123

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RossettiY.RevolP.McintoshR.PisellaL.RodeG.DanckertJ.MilnerA.D. (2005).Visually guided reaching: Bilateral posterior parietal lesions cause a switch from fast visuomotor to slow cognitive control. Neuropsychologia 43162177. PubMed ID: 15707902 doi:10.1016/j.neuropsychologia.2004.11.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RossitS.McAdamT.McleanD.A.GoodaleM.A. & CulhamJ.C. (2013). FMRI reveals a lower visual field preference for hand actions in human superior parieto-occipital cortex (SPOC) and precuneus. Cortex 4925252541. PubMed ID: 23453790 doi:10.1016/j.cortex.2012.12.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SayresR. & Grill-SpectorK. (2008). Relating retinotopic and object-selective responses in human lateral occipital cortex. Journal of Neurophysiology 100249267. PubMed ID: 18463186 doi:10.1152/jn.01383.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchmidtR.A.ZelaznikH.HawkinsB.FrankJ.S. & QuinnJ.T.Jr. (1979). Motor-output variability: A theory for the accuracy of rapid motor acts. Psychological Review 86415451. doi:10.1037/0033-295X.86.5.415

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ServosP.GoodaleA. & JakobsonS. (1992). The role of binocular vision in prehension: A kinematic analysis. Vision Research 3215131521. PubMed ID: 1455724 doi:10.1016/0042-6989(92)90207-Y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ServosP. & GoodaleM.A. (1994). Binocular vision and the on-line control of human prehension. Experimental Brain Research 98119127. PubMed ID: 8013579 doi:10.1007/BF00229116

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StrotherL.AldcroftA.LavellC. & VilisT. (2010). Equal degrees of object selectivity for upper and lower visual field stimuli. Journal of Neurophysiology 10420752081. PubMed ID: 20719923 doi:10.1152/jn.00462.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TresilianJ.R.Mon-WilliamsM. & KellyB.M. (1999). Increasing confidence in vergence as a distance cue. Proceedings of the Royal Society of London Biological Sciences B 2663944. doi:10.1098/rspb.1999.0601

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WalravenJ. (1972). TNO test for stereoscopic vision. Utrecht, Netherlands: Lameris Instrumenten.

  • WestwoodD.A. & GoodaleM.A. (2003). Perceptual illusion and the real-time control of action. Spatial Vision 16243254. PubMed ID: 12858950 doi:10.1163/156856803322467518

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WolpertD.M.GhahramaniZ. & JordanM. (1995). An internal model for sensorimotor integration. Science 26918801882. PubMed ID: 7569931 doi:10.1126/science.7569931

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 37 37 7
Full Text Views 8 8 5
PDF Downloads 5 5 2
Altmetric Badge
PubMed
Google Scholar