The Nature of Finger Enslaving: New Results and Their Implications

in Motor Control
View More View Less
  • 1 Cyber-Physical Systems Laboratory, Institute of Electronics and Computer Science, Riga, Latvia
  • | 2 Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $79.00

1 year online subscription

USD  $105.00

Student 2 year online subscription

USD  $150.00

2 year online subscription

USD  $200.00

We present a review on the phenomenon of unintentional finger action seen when other fingers of the hand act intentionally. This phenomenon (enslaving) has been viewed as a consequence of both peripheral (e.g., connective tissue links and multifinger muscles) and neural (e.g., projections of corticospinal pathways) factors. Recent studies have shown relatively large and fast drifts in enslaving toward higher magnitudes, which are not perceived by subjects. These and other results emphasize the defining role of neural factors in enslaving. We analyze enslaving within the framework of the theory of motor control with spatial referent coordinates. This analysis suggests that unintentional finger force changes result from drifts of referent coordinates, possibly reflecting the spread of cortical excitation.

  • Abolins, V., Cuadra, C., Ricotta, J., & Latash, M.L. (2020a). What do people match when they try to match force? Analysis at the level of hypothetical control variables. Experimental Brain Research, 238, 18851901. https://doi.org/10.1007/s00221-020-05850-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abolins, V., Stremoukhov, A., Walter, C., & Latash, M.L. (2020b). On the origin of finger enslaving: Control with referent coordinates and effects of visual feedback. Journal of Neurophysiology, 124(6), 16251636. https://doi.org/10.1152/jn.00322.2020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Mattos, D., Zatsiorsky, V.M., & Latash, M.L. (2016a). Synergies in the space of control variables within the equilibrium-point hypothesis. Neuroscience, 315, 150161. https://doi.org/10.1016/j.neuroscience.2015.12.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Mattos, D., Zatsiorsky, V.M., & Latash, M.L. (2016b). Unsteady steady-states: Central causes of unintentional force drift. Experimental Brain Research, 234(12), 35973611. https://doi.org/10.1007/s00221-016-4757-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ambike, S., Zatsiorsky, V.M., & Latash, M.L. (2015). Processes underlying unintentional finger-force changes in the absence of visual feedback. Experimental Brain Research, 233(3), 711721. https://doi.org/10.1007/s00221-014-4148-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, K.N., Chao, E.Y., Cooney, W.P., & Linscheid, R.L. (1985). Forces in the normal and abnormal hand. Journal of Orthopaedic Research, 3(2), 202211. https://doi.org/10.1002/jor.1100030210

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aoki, T., Furuya, S., & Kinoshita, H. (2005). Finger-tapping ability in male and female pianists and nonmusician controls. Motor Control, 9(1), 2339. https://doi.org/10.1123/mcj.9.1.23

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, S.N., Kilner, J.M., Pinches, E.M., & Lemon, R.N. (1999). The role of synchrony and oscillations in the motor output. Experimental Brain Research, 128(1–2), 109117. https://doi.org/10.1007/s002210050825

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandauer, B., Hermsdörfer, J., Geißendörfer, T., Schoch, B., Gizewski, E.R., & Timmann, D. (2012). Impaired and preserved aspects of independent finger control in patients with cerebellar damage. Journal of Neurophysiology, 107(4), 10801093. https://doi.org/10.1152/jn.00142.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunnström, S. (1970). Movement therapy in hemiplegia: A neurophysiological approach (1st ed.). Harper & Row.

  • Burnett, R.A., Laidlaw, D.H., & Enoka, R.M. (2000). Coactivation of the antagonist muscle does not covary with steadiness in old adults. Journal of Applied Physiology, 89(1), 6171. https://doi.org/10.1152/jappl.2000.89.1.61

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmichael, T.S., Wei, L., Rovainen, C.M., & Woolsey, T.A. (2001). New patterns of intracortical projections after focal cortical stroke. Neurobiology of Disease, 8(5), 910922. https://doi.org/10.1006/nbdi.2001.0425

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chao, E.Y., Opgrande, J.D., & Axmear, F.E. (1976). Three-dimensional force analysis of finger joints in selected isometric hand functions. Journal of Biomechanics, 9(6), 387396. https://doi.org/10.1016/0021-9290(76)90116-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coombes, S.A., Corcos, D.M., & Vaillancourt, D.E. (2011). Spatiotemporal tuning of brain activity and force performance. NeuroImage, 54(3), 22262236. https://doi.org/10.1016/j.neuroimage.2010.10.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuadra, C., Bartsch, A., Tiemann, P., Reschechtko, S., & Latash, M.L. (2018). Multi-finger synergies and the muscular apparatus of the hand. Experimental Brain Research, 236(5), 13831393. https://doi.org/10.1007/s00221-018-5231-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cuadra, C., Corey, J., & Latash, M.L. (2021). Distortions of the efferent copy during force perception: A study of force drifts and effects of muscle vibration. Neuroscience, 457, 139154. https://doi.org/10.1016/j.neuroscience.2021.01.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danion, F., Latash, M.L., Li, Z.M., & Zatsiorsky, V.M. (2001). The effect of a fatiguing exercise by the index finger on single- and multi-finger force production tasks. Experimental Brain Research, 138(3), 322329. https://doi.org/10.1007/s002210100698

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danion, F., Schöner, G., Latash, M.L., Li, S., Scholz, J.P., & Zatsiorsky, V.M. (2003). A mode hypothesis for finger interaction during multi-finger force-production tasks. Biological Cybernetics, 88(2), 9198. https://doi.org/10.1007/s00422-002-0336-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinse, H.R. (2006). Cortical reorganization in the aging brain. Progress in brain research, 157, 5780. https://doi.org/10.1016/S0079-6123(06)57005-0

    • Search Google Scholar
    • Export Citation
  • Doherty, T.J., & Brown, W.F. (1997). Age-related changes in the twitch contractile properties of human thenar motor units. Journal of Applied Physiology, 82(1), 93101. https://doi.org/10.1152/jappl.1997.82.1.93

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchateau, J., & Hainaut, K. (1990). Effects of immobilization on contractile properties, recruitment and firing rates of human motor units. The Journal of Physiology, 422(1), 5565. https://doi.org/10.1113/jphysiol.1990.sp017972

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enoka, R.M., Christou, E.A., Hunter, S.K., Kornatz, K.W., Semmler, J.G., Taylor, A.M., & Tracy, B.L. (2003). Mechanisms that contribute to differences in motor performance between young and old adults. Journal of Electromyography and Kinesiology, 13(1), 112. https://doi.org/10.1016/S1050-6411(02)00084-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fahn, S., Jankovic, J., & Hallett, M. (2011). Principles and practice of movement disorders. Elsevier Limited.

  • Feldman, A.G. (1966). Functional tuning of the nervous system with control of movement or maintenance of a steady posture-II. Controllable parameters of the muscle. Biofizika, 11, 565578.

    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1980). Superposition of motor programs-I. Rhythmic forearm movements in man. Neuroscience, 5(1), 8190. https://doi.org/10.1016/0306-4522(80)90073-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (1986). Once more on the equilibrium-point hypothesis (λ model) for motor control. Journal of Motor Behavior, 18(1), 1754. https://doi.org/10.1080/00222895.1986.10735369

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (2015). Referent control of action and perception: Challenging conventional theories in behavioral neuroscience. In Referent control of action and perception: Challenging conventional theories in behavioral neuroscience (pp. 1258). Springer. https://doi.org/10.1007/978-1-4939-2736-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldman, A.G. (2019). Indirect, referent control of motor actions underlies directional tuning of neurons. Journal of Neurophysiology, 121(3), 823841. https://doi.org/10.1152/jn.00575.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fish, J., & Soechting, J.F. (1992). Synergistic finger movements in a skilled motor task. Experimental Brain Research, 91(2), 327334. https://doi.org/10.1007/BF00231666

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galganski, M.E., Fuglevand, A.J., & Enoka, R.M. (1993). Reduced control of motor output in a human hand muscle of elderly subjects during submaximal contractions. Journal of Neurophysiology, 69(6), 21082115. https://doi.org/10.1152/jn.1993.69.6.2108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelb, D.J., Oliver, E., & Gilman, S. (1999). Diagnostic criteria for Parkinson disease. Archives of Neurology, 56(1), 3339. https://doi.org/10.1001/archneur.56.1.33

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giampaoli, S., Ferrucci, L., Cecchi, F., Noce, C.lo, Poce, A., Dima, F., Santaquilani, A., Vescio, M.F., & Menotti, A. (1999). Hand-grip strength predicts incident disability in non-disabled older men. Age and Ageing, 28(3), 283288. https://doi.org/10.1093/ageing/28.3.283

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hackel, M.E., Wolfe, G.A., Bang, S.M., & Canfield, J.S. (1992). Changes in hand function in the aging adult as determined by the Jebsen Test of hand function. Physical Therapy, 72(5), 373377. https://doi.org/10.1093/ptj/72.5.373

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hager-Ross, C., & Schieber, M.H. (2000). Quantifying the independence of human finger movements: Comparisons of digits, hands, and movement frequencies. Journal of Neuroscience, 20(22), 85428550. https://doi.org/10.1523/jneurosci.20-22-08542.2000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiraoka, K., Ito, S., Lutton, M., Nakano, M., & Yonei, N. (2020). Long-term practice of isolated finger movements reduces enslaved response of tonically contracting little finger abductor to tonic index finger abduction. Experimental Brain Research, 238(2), 499512. https://doi.org/10.1007/s00221-020-05731-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirose, J., Cuadra, C., Walter, C., & Latash, M.L. (2020). Finger interdependence and unintentional force drifts: Lessons from manipulations of visual feedback. Human Movement Science, 74, 102714. https://doi.org/10.1016/j.humov.2020.102714

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, S., Gibbs, J., Dunlop, D., Edelman, P., Singer, R., & Chang, R.W. (1997). Predictors of decline in manual performance in older adults. Journal of the American Geriatrics Society, 45(8), 905910. https://doi.org/10.1111/j.1532-5415.1997.tb02957.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, S.M., & Crome, P. (2002). Hand function and stroke. Reviews in Clinical Gerontology, 12(1), 68. https://doi.org/10.1017/S0959259802012194

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ilmane, N., Sangani, S., & Feldman, A.G. (2013). Corticospinal control strategies underlying voluntary and involuntary wrist movements. Behavioural Brain Research, 236(1), 350358. https://doi.org/10.1016/j.bbr.2012.09.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jo, H.J., Ambike, S., Lewis, M.M., Huang, X., & Latash, M.L. (2016a). Finger force changes in the absence of visual feedback in patients with Parkinson’s disease. Clinical Neurophysiology, 127(1), 684692. https://doi.org/10.1016/j.clinph.2015.05.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jo, H.J., Maenza, C., Good, D.C., Huang, X., Park, J., Sainburg, R.L., & Latash, M.L. (2016b). Effects of unilateral stroke on multi-finger synergies and their feed-forward adjustments. Neuroscience, 319, 194205. https://doi.org/10.1016/j.neuroscience.2016.01.054

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jo, H.J., Park, J., Lewis, M.M., Huang, X., & Latash, M.L. (2015). Prehension synergies and hand function in early-stage Parkinson’s disease. Experimental Brain Research, 233(2), 425440. https://doi.org/10.1007/s00221-014-4130-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kamen, G., & Roy, A. (2000). Motor unit synchronization in young and elderly adults. European Journal of Applied Physiology, 81(5), 403410. https://doi.org/10.1007/s004210050061

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, N., Shinohara, M., Zatsiorsky, V.M., & Latash, M.L. (2004). Learning multi-finger synergies: An uncontrolled manifold analysis. Experimental Brain Research, 157(3), 336350. https://doi.org/10.1007/s00221-004-1850-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapur, S., Friedman, J., Zatsiorsky, V.M., & Latash, M.L. (2010a). Finger interaction in a three-dimensional pressing task. Experimental Brain Research, 203(1), 101118. https://doi.org/10.1007/s00221-010-2213-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapur, S., Zatsiorsky, V.M., & Latash, M.L. (2010b). Age-related changes in the control of finger force vectors. Journal of Applied Physiology, 109(6), 18271841. https://doi.org/10.1152/japplphysiol.00430.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keen, D.A., & Fuglevand, A.J. (2003). Role of intertendinous connections in distribution of force in the human extensor digitorum muscle. Muscle and Nerve, 28(5), 614622. https://doi.org/10.1002/mus.10481

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kernell, D., Eerbeek, O., & Verhey, B.A. (1983). Relation between isometric force and stimulus rate in cat’s hindlimb motor units of different twitch contraction time. Experimental Brain Research, 50(2–3), 220227. https://doi.org/10.1007/BF00239186

    • Search Google Scholar
    • Export Citation
  • Kilbreath, S.L., & Gandevia, S.C. (1994). Limited independent flexion of the thumb and fingers in human subjects. The Journal of Physiology, 479(3), 487497. https://doi.org/10.1113/jphysiol.1994.sp020312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilbreath, S.L., Gorman, R.B., Raymond, J., & Gandevia, S.C. (2002). Distribution of the forces produced by motor unit activity in the human flexor digitorum profundus. The Journal of Physiology, 543(1), 289296. https://doi.org/10.1113/jphysiol.2002.023861

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.W., Shim, J.K., Zatsiorsky, V.M., & Latash, M.L. (2008). Finger inter-dependence: Linking the kinetic and kinematic variables. Human Movement Science, 27(3), 408422. https://doi.org/10.1016/j.humov.2007.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kong, J., Kim, K., Joung, H.J., Chung, C.Y., & Park, J. (2019). Effects of spastic cerebral palsy on multi-finger coordination during isometric force production tasks. Experimental Brain Research, 237(12), 32813295. https://doi.org/10.1007/s00221-019-05671-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsmeer, J.M.F., & Long, C. (1965). The mechanism of finger control, based on electromyograms and location analysis. Cells Tissues Organs, 60(3), 330347. https://doi.org/10.1159/000142668

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, C.E., & Schieber, M.H. (2004). Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex or corticospinal tract. Journal of Neurophysiology, 91(4), 17221733. https://doi.org/10.1152/jn.00805.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsson, L., & Ansved, T. (1995). Effects of ageing on the motor unit. Progress in Neurobiology, 45(5), 397458 . https://doi.org/10.1016/0301-0082(95)98601-Z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larsson, L., Degens, H., Li, M., Salviati, L., Lee, Young Il, Thompson, W., Kirkland, J.L., & Sandri, M. (2019). Sarcopenia: Aging-related loss of muscle mass and function. Physiological Reviews, 99(1), 427511. https://doi.org/10.1152/physrev.00061.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (1992). Motor control in Down syndrome: The role of adaptation and practice. Journal of Developmental and Physical Disabilities, 4(3), 227261. https://doi.org/10.1007/BF01046967

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2000). Motor coordination in Down syndrome: The role of adaptive changes. Perceptual-Motor Behavior in Down Syndrome, 199, 223.

    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2018) Muscle co-activation: Definitions, mechanisms, and functions. Journal of Neurophysiology, 120, 88104. https://doi.org/10.1152/jn.00084.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2019). Physics of biological action and perception. Elsevier. https://doi.org/10.1016/C2018-0-04663-0

  • Latash, M.L., & Zatsiorsky, V.M. (1993). Joint stiffness: Myth or reality? Human Movement Science, 12(6), 653692. https://doi.org/10.1016/0167-9457(93)90010-M

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Kang, N., & Patterson, D. (2002a). Finger coordination in persons with Down syndrome: Atypical patterns of coordination and the effects of practice. Experimental Brain Research, 146(3), 345355. https://doi.org/10.1007/s00221-002-1189-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Li, S., Danion, F., & Zatsiorsky, V.M. (2002b). Central mechanisms of finger interaction during one- and two-hand force production at distal and proximal phalanges. Brain Research, 924(2), 198208. https://doi.org/10.1016/S0006-8993(01)03234-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Scholz, J.F., Danion, F., & Schöner, G. (2001). Structure of motor variability in marginally redundant multifinger force production tasks. Experimental Brain Research, 141(2), 153165. https://doi.org/10.1007/s002210100861

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Shim, J.K., Smilga, A.V., & Zatsiorsky, V.M. (2005). A central back-coupling hypothesis on the organization of motor synergies: A physical metaphor and a neural model. Biological Cybernetics, 92(3), 186191. https://doi.org/10.1007/s00422-005-0548-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, E.S., Coshall, C., Dundas, R., Stewart, J., Rudd, A.G., Howard, R., & Wolfe, C. D.A. (2001). Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke, 32(6), 12791284. https://doi.org/10.1161/01.STR.32.6.1279

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leijnse, J.N.A.L., Snijders, C.J., Bonte, J.E., Landsmeer, J.M.F., Kalker, J.J., van der Meulen, J.C., Sonneveld, G.J., & Hovius, S.E.R. (1993). The hand of the musician: The kinematics of the bidigital finger system with anatomical restrictions. Journal of Biomechanics, 26(10), 11691179. https://doi.org/10.1016/0021-9290(93)90065-M

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., Danion, F., Latash, M.L., Li, Z.M., & Zatsiorsky, V.M. (2000). Characteristics of finger force production during one- and two-hand tasks. Human Movement Science, 19(6), 897923. https://doi.org/10.1016/S0167-9457(01)00023-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., Danion, F., Zatsiorsky, V.M., & Latash, M.L. (2002). Coupling phenomena during asynchronous submaximal two-hand, multi-finger force production tasks. Neuroscience Letters, 331(2), 7578. https://doi.org/10.1016/S0304-3940(02)00869-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., Latash, M.L., Yue, G.H., Siemionow, V., & Sahgal, V. (2003). The effects of stroke and age on finger interaction in multi-finger force production tasks. Clinical Neurophysiology, 114(9), 16461655. https://doi.org/10.1016/S1388-2457(03)00164-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.M., Dun, S., Harkness, D.A., & Brininger, T.L. (2004). Motion enslaving among multiple fingers of the human hand. Motor Control, 8(1), 115. https://doi.org/10.1123/mcj.8.1.1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.M., Latash, M.L., & Zatsiorsky, V.M. (1998). Force sharing among fingers as a model of the redundancy problem. Experimental Brain Research, 119(3), 276286. https://doi.org/10.1007/s002210050343

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z.M., Zatsiorsky, V.M., Latash, M.L., & Bose, N.K. (2002). Anatomically and experimentally based neural networks modeling force coordination in static multi-finger tasks. Neurocomputing, 47(1–4), 259275. https://doi.org/10.1016/S0925-2312(01)00603-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Long, C. (1969). Intrinsic-extrinsic muscle control of the fingers. Plastic and Reconstructive Surgery, 44(1), 93.

  • Madarshahian, S., Letizi, J., & Latash, M.L. (2021). Synergic control of a single muscle: The example of flexor digitorum superficialis. The Journal of Physiology, 599(4), 12611279. https://doi.org/10.1113/JP280555

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J.R., Budgeon, M.K., Zatsiorsky, V.M., & Latash, M.L. (2011). Stabilization of the total force in multi-finger pressing tasks studied with the “inverse piano” technique. Human Movement Science, 30(3), 446458. https://doi.org/10.1016/j.humov.2010.08.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J.R., Latash, M.L., & Zatsiorsky, V.M. (2009). Interaction of finger enslaving and error compensation in multiple finger force production. Experimental Brain Research, 192(2), 293298. https://doi.org/10.1007/s00221-008-1615-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J.R., Terekhov, A.V., Latash, M.L., & Zatsiorsky, V.M. (2013). Comparison of interfinger connection matrix computation techniques. Journal of Applied Biomechanics, 29(5), 525534. https://doi.org/10.1123/jab.29.5.525

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marzke, M.W. (1992). Evolutionary development of the human thumb. Hand Clinics, 8(1), 18. https://doi.org/10.1016/S0749-0712(21)00687-9

  • McKiernan, B.J., Marcario, J.K., Karrer, J.H., & Cheney, P.D. (1998). Corticomotoneuronal postspike effects in shoulder, elbow, wrist, digit, and intrinsic hand muscles during a reach and prehension task. Journal of Neurophysiology, 80(4), 19611980. https://doi.org/10.1152/jn.1998.80.4.1961

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLennan, J.E., Nakano, K., Tyler, H.R., & Schwab, R.S. (1972). Micrographia in Parkinson’s disease. Journal of the Neurological Sciences, 15(2), 141152. https://doi.org/10.1016/0022-510X(72)90002-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehring, C., Akselrod, M., Bashford, L., Mace, M., Choi, H., Blüher, M., Buschhoff, A.S., Pistohl, T., Salomon, R., Cheah, A., Blanke, O., Serino, A., & Burdet, E. (2019). Augmented manipulation ability in humans with six-fingered hands. Nature Communications, 10(1), 19. https://doi.org/10.1038/s41467-019-10306-w

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirakhorlo, M., Maas, H., & Veeger, H.E.J. (2018). Increased enslaving in elderly is associated with changes in neural control of the extrinsic finger muscles. Experimental Brain Research, 236(6), 15831592. https://doi.org/10.1007/s00221-018-5219-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, J.H., & Hof, P.R. (1997). Life and death of neurons in the aging brain. Science, 278(5337), 412419. https://doi.org/10.1126/science.278.5337.412

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ohtsuki, T. (1981). Inhibition of individual fingers during grip strength exertion. Ergonomics, 24(1), 2136. https://doi.org/10.1080/00140138108924827

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olafsdottir, H., Zatsiorsky, V.M., & Latash, M.L. (2005). Is the thumb a fifth finger? A study of digit interaction during force production tasks. Experimental Brain Research, 160(2), 203213. https://doi.org/10.1007/s00221-004-2004-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olafsdottir, H.B., Zatsiorsky, V.M., & Latash, M.L. (2008). The effects of strength training on finger strength and hand dexterity in healthy elderly individuals. Journal of Applied Physiology, 105(4), 11661178. https://doi.org/10.1152/japplphysiol.00054.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, M.A. (2015). Preliminary findings of finger independency and visual force control in children with DCD. Brazilian Journal of Motor Behavior, 9(2), 2039. https://doi.org/10.20338/bjmb.v9i2.78

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oliveira, M.A., Hsu, J., Park, J., Clark, J.E., & Shim, J.K. (2008). Age-related changes in multi-finger interactions in adults during maximum voluntary finger force production tasks. Human Movement Science, 27(5), 714727. https://doi.org/10.1016/j.humov.2008.04.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owings, T.M., & Grabiner, M.D. (1998). Normally aging older adults demonstrate the bilateral deficit during ramp and hold contractions. Journals of Gerontology—Series A Biological Sciences and Medical Sciences, 53(6), B425B429. https://doi.org/10.1093/gerona/53A.6.B425

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paclet, F., Ambike, S., Zatsiorsky, V.M., & Latash, M.L. (2014). Enslaving in a serial chain: Interactions between grip force and hand force in isometric tasks. Experimental Brain Research, 232(3), 775787. https://doi.org/10.1007/s00221-013-3787-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., Lewis, M.M., Huang, X., & Latash, M.L. (2013). Effects of olivo-ponto-cerebellar atrophy (OPCA) on finger interaction and coordination. Clinical Neurophysiology, 124(5), 991998. https://doi.org/10.1016/j.clinph.2012.10.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., Lewis, M.M., Huang, X., & Latash, M.L. (2014). Dopaminergic modulation of motor coordinaton in Parkinson’s disease. Parkinsonism & Related Disorders, 20(1), 6468. https://doi.org/10.1016/j.parkreldis.2013.09.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., Wu, Y.H., Lewis, M.M., Huang, X., & Latash, M.L. (2012). Changes in multifinger interaction and coordination in Parkinson’s disease. Journal of Neurophysiology, 108(3), 915924. https://doi.org/10.1152/jn.00043.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pataky, T.C., Latash, M.L., & Zatsiorsky, V.M. (2007). Finger interaction during maximal radial and ulnar deviation efforts: Experimental data and linear neural network modeling. Experimental Brain Research, 179(2), 301312. https://doi.org/10.1007/s00221-006-0787-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poon, C., Chin-Cottongim, L.G., Coombes, S.A., Corcos, D.M., & Vaillancourt, D.E. (2012). Spatiotemporal dynamics of brain activity during the transition from visually guided to memory-guided force control. Journal of Neurophysiology, 108(5), 13351348. https://doi.org/10.1152/jn.00972.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raghavan, P., Petra, E., Krakauer, J.W., & Gordon, A.M. (2006). Patterns of impairment in digit independence after subcortical stroke. Journal of Neurophysiology, 95(1), 369378. https://doi.org/10.1152/jn.00873.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rantanen, T., Guralnik, J.M., Foley, D., Masaki, K., Leveille, S., Curb, J.D., & White, L. (1999). Midlife hand grip strength as a predictor of old age disability. Journal of the American Medical Association, 281(6), 558560. https://doi.org/10.1001/jama.281.6.558

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raptis, H., Burtet, L., Forget, R., & Feldman, A.G. (2010). Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: Possible involvement of corticospinal pathways. Journal of Physiology, 588(9), 15511570. https://doi.org/10.1113/jphysiol.2009.186858

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reilly, K.T., & Hammond, G.R. (2000). Independence of force production by digits of the human hand. Neuroscience Letters, 290(1), 5356. https://doi.org/10.1016/S0304-3940(00)01328-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reschechtko, S., & Latash, M.L. (2017). Stability of hand force production. I. Hand level control variables and multifinger synergies. Journal of Neurophysiology, 118(6), 31523164. https://doi.org/10.1152/jn.00485.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reschechtko, S., & Latash, M.L. (2018). Stability of hand force production. II. Ascending and descending synergies. Journal of Neurophysiology, 120(3), 10451060. https://doi.org/10.1152/jn.00045.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reschechtko, S., Zatsiorsky, V.M., & Latash, M.L. (2014). Stability of multifinger action in different state spaces. Journal of Neurophysiology, 112(12), 32093218. https://doi.org/10.1152/jn.00395.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricotta, J., Cuadra, C., Evans, J.S., & Latash, M.L. (2021). Perturbation-induced fast drifts in finger enslaving. Experimental Brain Research, 239, 891902. https://doi.org/10.1007/s00221-020-06027-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanei, K., & Keir, P.J. (2013). Independence and control of the fingers depend on direction and contraction mode. Human Movement Science, 32(3), 457471. https://doi.org/10.1016/j.humov.2013.01.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schieber, M.H. (1991). Individuated finger movements of rhesus monkeys: A means of quantifying the independence of the digits. Journal of Neurophysiology, 65(6), 13811391. https://doi.org/10.1152/jn.1991.65.6.1381

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schieber, M.H. (1995). Muscular production of individuated finger movements: The roles of extrinsic finger muscles. Journal of Neuroscience, 15(1, pt 1), 284297. https://doi.org/10.1523/JNEUROSCI.15-01-00284.1995

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schieber, M.H. (2001). Constraints on somatotopic organization in the primary motor cortex. Journal of Neurophysiology, 86(5), 21252143. https://doi.org/10.1152/jn.2001.86.5.2125

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schieber, M.H., & Hibbard, L.S. (1993). How somatotopic is the motor cortex hand area? Science, 261(5120), 489492. https://doi.org/10.1126/science.8332915

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schieber, M.H., & Poliakov, A.V. (1998). Partial inactivation of the primary motor cortex hand area: Effects on individuated finger movements. Journal of Neuroscience, 18(21), 90389054. https://doi.org/10.1523/JNEUROSCI.18-21-09038.1998

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schieber, M.H., & Santello, M. (2004). Hand function: Peripheral and central constraints on performance. Journal of Applied Physiology, 96(6), 22932300. https://doi.org/10.1152/japplphysiol.01063.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., Danion, F., Latash, M.L., & Schöner, G. (2002). Understanding finger coordination through analysis of the structure of force variability. Biological Cybernetics, 86(1), 2939. https://doi.org/10.1007/s004220100279

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., & Schöner, G. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research, 126(3), 289306. https://doi.org/10.1007/s002210050738

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shim, J.K., Karol, S., Hsu, J., & de Oliveira, M.A. (2008). Hand digit control in children: Motor overflow in multi-finger pressing force vector space during maximum voluntary force production. Experimental Brain Research, 186(3), 443456. https://doi.org/10.1007/s00221-007-1246-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shim, J.K., Oliveira, M.A., Hsu, J., Huang, J., Park, J., & Clark, J.E. (2007). Hand digit control in children: Age-related changes in hand digit force interactions during maximum flexion and extension force production tasks. Experimental Brain Research, 176(2), 374386. https://doi.org/10.1007/s00221-006-0629-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinohara, M., Latash, M.L., & Zatsiorsky, V.M. (2003a). Age effects on force produced by intrinsic and extrinsic hand muscles and finger interaction during MVC tasks. Journal of Applied Physiology, 95(4), 13611369. https://doi.org/10.1152/japplphysiol.00070.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinohara, M., Li, S., Kang, N., Zatsiorsky, V.M., & Latash, M.L. (2003b). Effects of age and gender on finger coordination in MVC and submaximal force-matching tasks. Journal of Applied Physiology, 94(1), 259270. https://doi.org/10.1152/japplphysiol.00643.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinohara, M., Scholz, J.P., Zatsiorsky, V.M., & Latash, M.L. (2004). Finger interaction during accurate multi-finger force production tasks in young and elderly persons. Experimental Brain Research, 156(3), 282292. https://doi.org/10.1007/s00221-003-1786-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, T., SKM, V., Zatsiorsky, V.M., & Latash, M.L. (2010). Fatigue and motor redundancy: Adaptive increase in finger force variance in multi-finger tasks. Journal of Neurophysiology, 103(6), 29903000. https://doi.org/10.1152/jn.00077.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slifkin, A.B., Vaillancourt, D.E., & Newell, K.M. (2000). Intermittency in the control of continuous force production. Journal of Neurophysiology, 84(4), 17081718. https://doi.org/10.1152/jn.2000.84.4.1708

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slobounov, S., Chiang, H., Johnston, J., & Ray, W. (2002a). Modulated cortical control of individual fingers in experienced musicians: An EEG study. Clinical Neurophysiology, 113(12), 20132024. https://doi.org/10.1016/S1388-2457(02)00298-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slobounov, S., Johnston, J., Chiang, H., & Ray, W. (2002b). The role of sub-maximal force production in the enslaving phenomenon. Brain Research, 954(2), 212219. https://doi.org/10.1016/S0006-8993(02)03288-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slobounov, S., Johnston, J., Chiang, H., & Ray, W.J. (2002c). Motor-related cortical potentials accompanying enslaving effect in single versus combination of fingers force production tasks. Clinical Neurophysiology, 113(9), 14441453. https://doi.org/10.1016/S1388-2457(02)00195-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solnik, S., Qiao, M., & Latash, M.L. (2017). Effects of visual feedback and memory on unintentional drifts in performance during finger-pressing tasks. Experimental Brain Research, 235(4), 11491162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tracy, B.L., Maluf, K.S., Stephenson, J.L., Hunter, S.K., & Enoka, R.M. (2005). Variability of motor unit discharge and force fluctuations across a range of muscle forces in older adults. Muscle and Nerve, 32(4), 533540. https://doi.org/10.1002/mus.20392

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaillancourt, D.E., & Russell, D.M. (2002). Temporal capacity of short-term visuomotor memory in continuous force production. Experimental Brain Research, 145(3), 275285. https://doi.org/10.1007/s00221-002-1081-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaillancourt, D.E., Slifkin, A.B., & Newell, K.M. (2001). Visual control of isometric force in Parkinson’s disease. Neuropsychologia, 39(13), 14101418. https://doi.org/10.1016/S0028-3932(01)00061-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaillancourt, D.E., Thulborn, K.R., & Corcos, D.M. (2003). Neural basis for the processes that underlie visually guided and internally guided force control in humans. Journal of Neurophysiology, 90(5), 33303340. https://doi.org/10.1152/jn.00394.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Beek, N., Stegeman, D.F., Jonkers, I., de Korte, C.L., Veeger, D.J., & Maas, H. (2019). Single finger movements in the aging hand: Changes in finger independence, muscle activation patterns and tendon displacement in older adults. Experimental Brain Research, 237(5), 11411154. https://doi.org/10.1007/s00221-019-05487-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Beek, N., Stegeman, D.F., Veeger, D., & Maas, H. (2017). Age related differences in finger independency and neuromuscular control. Paper presented at the XXVI Congress of the International Society of Biomechanics, Brisbane.

    • Search Google Scholar
    • Export Citation
  • van Duinen, H., & Gandevia, S.C. (2011). Constraints for control of the human hand. Journal of Physiology, 589(23), 55835593. https://doi.org/10.1113/jphysiol.2011.217810

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Duinen, H., Yu, W.S., & Gandevia, S.C. (2009). Limited ability to extend the digits of the human hand independently with extensor digitorum. Journal of Physiology, 587(20), 47994810. https://doi.org/10.1113/jphysiol.2009.177964

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Schroeder, H.P., Botte, M.J., & Gellman, H. (1990). Anatomy of the juncturae tendinum of the hand. Journal of Hand Surgery, 15(4), 595602. https://doi.org/10.1016/S0363-5023(09)90021-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelm, L., Zatsiorsky, V.M., & Latash, M.L. (2013). Equifinality and its violations in a redundant system: Multifinger accurate force production. Journal of Neurophysiology, 110(8), 19651973. https://doi.org/10.1152/jn.00461.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelm, L.A., Martin, J.R., Latash, M.L., & Zatsiorsky, V.M. (2014). Finger enslaving in the dominant and non-dominant hand. Human Movement Science, 33(1), 185193. https://doi.org/10.1016/j.humov.2013.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winges, S.A., & Furuya, S. (2015). Distinct digit kinematics by professional and amateur pianists. Neuroscience, 284, 643652. https://doi.org/10.1016/j.neuroscience.2014.10.041

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Y.H., Pazin, N., Zatsiorsky, V.M., & Latash, M.L. (2012). Practicing elements versus practicing coordination: Changes in the structure of variance. Journal of Motor Behavior, 44(6), 471478. https://doi.org/10.1080/00222895.2012.740101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., Ejaz, N., Hertler, B., Branscheidt, M., Widmer, M., Faria, A.V., Harran, M.D., Cortes, J.C., Kim, N., Celnik, P.A., Kitago, T., Luft, A.R., Krakauer, J.W., & Diedrichsen, J. (2017). Separable systems for recovery of finger strength and control after stroke. Journal of Neurophysiology, 118(2), 11511163. https://doi.org/10.1152/jn.00123.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, W.S., van Duinen, H., & Gandevia, S.C. (2010). Limits to the control of the human thumb and fingers in flexion and extension. Journal of Neurophysiology, 103(1), 278289. https://doi.org/10.1152/jn.00797.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zatsiorsky, V.M., Li, Z.M., & Latash, M.L. (2000). Enslaving effects in multi-finger force production. Experimental Brain Research, 131(2), 187195. https://doi.org/10.1007/s002219900261

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 183 183 182
Full Text Views 258 258 10
PDF Downloads 225 225 14