Role of Limb and Target Vision in the Online Control of Memory-Guided Reaches

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

This investigation tested the proposal that a “highly accurate” and temporally unstable stored target representation is available to the motor system for the online control of memory-guided reaches. Participants reached to a target that was: (a) visible during the response, (b) extinguished at movement onset, and (c) occluded for 0, 500, 1500 and 2,500 ms in advance of response cueing. Additionally, trials were performed with (i.e., limb visible) and without (i.e., limb occluded) vision of the reaching limb. Results showed that limb occluded trials undershot the target location in each target condition, and were characterized by a primarily offline mode of control. In contrast, limb visible trials showed a consistent level of endpoint accuracy for each target condition and elicited more online reaching corrections than limb occluded trials. It is therefore proposed that a reasonably accurate and temporally stable stored target representation can be combined with vision of the moving limb for the online control of memory-guided reaches.

The author is with the Dept of Kinesiology and Program in Neural Science, Indiana University, Bloomington, IN 47405.

Motor Control
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 7 7 3
Full Text Views 2 2 2
PDF Downloads 2 2 2
Altmetric Badge
PubMed
Google Scholar