Hip Flexor and Knee Extensor Muscularity Are Associated With Sprint Performance in Sprint-Trained Preadolescent Boys

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Purpose: We attempted to determine the relationships between the cross-sectional area (CSA) of the trunk and lower limb muscles and sprint performance in male preadolescent sprinters. Methods: Fifteen sprint-trained preadolescent boys (age 11.6 ± 0.4 y) participated in this study. The CSAs of the participants’ trunk and lower limb muscles were measured using magnetic resonance imaging, and these muscles were normalized with free-fat mass. To assess participants’ sprint performance, sprint time and variables during the 50-m sprint test were measured. The sprint variables were expressed as their indices by normalizing with body height. Results: The relative CSAs of psoas major, adductors, and quadriceps femoris were significantly correlated with sprint time (r = −.802, −.643, and −.639). Moreover, the relative CSAs of these muscles were significantly correlated with indices of sprint velocity (r = .694, .612, and .630) and step frequency (r = .687, .740, and .590) but not with that of step length. Conclusions: These findings suggest that greater hip flexor and knee extensor muscularity in male preadolescent sprinters may help achieve superior sprint performance by potentially enhancing their moments, which may be induced by increased step frequency rather than step length during sprinting.

Tottori, Suga, Miyake, Tsuchikane, Otsuka, Nagano, Fujita, and Isaka are with the Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan.

Address author correspondence to Tadashi Suga at t-suga@fc.ritsumei.ac.jp.
Pediatric Exercise Science

Article Sections

References

  • 1.

    Abe TKumagai KBrechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exrec. 2000;32:11259. PubMed doi:10.1097/00005768-200006000-00014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Akagi RTakai YOhta MKanehisa HKawakami YFukunaga T. Muscle volume compared to cross-sectional area is more appropriate for evaluating muscle strength in young and elderly individuals. Age Ageing. 2009;38:5649. PubMed doi:10.1093/ageing/afp122

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Akima HUshiyama JKubo JFukuoka HKanehisa HFukunaga T. Effect of unloading on muscle volume with and without resistance training. Acta Astronaut. 2007;60:72836. doi:10.1016/j.actaastro.2006.10.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Alexander MJ. The relationship between muscle strength and sprint kinematics in elite sprinters. Can J Sport Sci. 1989;14:14857. PubMed

  • 5.

    Arnold ASAnderson FCPandy MGDelp SL. Muscular contributions to hip and knee extension during the single limb stance phase of normal gait: a framework for investigating the causes of crouch gait. J Biomech. 2005;38:21819. PubMed doi:10.1016/j.jbiomech.2004.09.036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Belli AKyröläinen HKomi PV. Moment and power of lower limb joints in running. Int J Sports Med. 2002;23:13641. PubMed doi:10.1055/s-2002-20136

  • 7.

    Bogduk NPearcy MHadfield G. Anatomy and biomechanics of psoas major. Clin Biomech. 1992;7:10919. PubMed doi:10.1016/0268-0033(92)90024-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Copaver KHertogh CHue O. The effects of psoas major and lumbar lordosis on hip flexion and sprint performance. Res Q Exerc Sport. 2012;83:1607. PubMed doi:10.1080/02701367.2012.10599846

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Dorn TWSchache AGPandy MG. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance. J Exp Biol. 2012;215:194456. PubMed doi:10.1242/jeb.064527

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Dowson MNNevill MELakomy HKNevill AMHazeldine RJ. Modelling the relationship between isokinetic muscle strength and sprint running performance. J Sports Sci. 1998;16:25765. PubMed doi:10.1080/026404198366786

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Fukunaga TMiyatani MTachi MKouzaki MKawakami YKanehisa H. Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand. 2001;172:24955. PubMed doi:10.1046/j.1365-201x.2001.00867.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Häkkinen KKeskinen KL. Muscle cross-sectional area and voluntary force production characteristics in elite strength- and endurance-trained athletes and sprinters. Eur J Appl Physiol Occup Physiol. 1989;59:21520. PubMed doi:10.1007/BF02386190

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Handsfield GGKnausl KRFiorentino NMMeyer CHHart JMBlemker SS. Adding muscle where you need it: non-uniform hypertrophy patterns in elite sprinters. Scand J Med Sci Sports. 2017;27:105060. doi:10.1111/sms.12723

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hobara HSano YKobayashi YHeldoorn TAMochimaru M. Step frequency and step length of 200-m sprint in able-bodied and amputee sprinters. Int J Sports Med. 2016;37:1658. PubMed doi:10.1055/s-0035-1564171

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hof AL. Scaling gait data to body size. Gait Posture. 1996;4:2223. doi:10.1016/0966-6362(95)01057-2

  • 16.

    Hoshikawa YIida TIi NMuramatsu MNakajima YChumank KKanehisa H. Cross-sectional area of psoas major muscle and hip flexion strength in youth soccer players. Eur J Appl Physiol. 2012;112:348794. PubMed doi:10.1007/s00421-012-2335-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hoshikawa YIida TMuramatsu MNakajima YFukunaga TKanehisa H. Differences in thigh muscularity and dynamic torque between junior and senior soccer players. J Sports Sci. 2009;27:12938. PubMed doi:10.1080/02640410802428063

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hoshikawa YMuramatsu MIida TIi NNakajima YKanehisa H. Sex differences in the cross-sectional areas of psoas major and thigh muscles in high school track and field athletes and nonathletes. J Physiol Anthropol. 2011;30:4753. PubMed doi:10.2114/jpa2.30.47

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hoshikawa YMuramatsu MIida TUchiyama ANakajima YKanehisa HFukunaga T. Influence of the psoas major and thigh muscularity on 100-m times in junior sprinters. Med Sci Sports Exerc. 2006;38:213843. PubMed doi:10.1249/01.mss.0000233804.48691.45

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kanehisa HIkegawa SFukunaga T. Comparison of muscle cross-sectional area and strength between untrained women and men. Eur J Appl Physiol Occup Physiol. 1994;68:14854. PubMed doi:10.1007/BF00244028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kubo KIkebukuro TYata HTomita MOkada M. Morphological and mechanical properties of muscle and tendon in highly trained sprinters. J Appl Biomech. 2011;27:33644. PubMed doi:10.1123/jab.27.4.336

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kubo THoshikawa YMuramatsu MIida TKomori SShibukawa KKanehisa H. Contribution of trunk muscularity on sprint run. Int J Sports Med. 2011;32:2238. PubMed doi:10.1055/s-0030-1268502

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kumagai KAbe TBrechue WFRyushi TTakano SMizuno M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol. 2000;88:8116. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kyle UGBosaeus IDe Lorenzo ADet al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr. 2004;23:143053. PubMed doi:10.1016/j.clnu.2004.09.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Maughan RJWatson JSWeir J. Relationships between muscle strength and muscle cross-sectional area in male sprinters and endurance runners. Eur J Appl Physiol Occup Physiol. 1983;50:30918. PubMed doi:10.1007/BF00423237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Mirwald RLBaxter-Jones ADBailey DABeunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34:68994. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Morin JBBourdin MEdouard PPeyrot NSamozino PLacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112:392130. PubMed doi:10.1007/s00421-012-2379-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Morin JBGimenez PEdouard Pet al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol. 2015;6:404. PubMed doi:10.3389/fphys.2015.00404

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Novacheck TF. The biomechanics of running. Gait Posture. 1998;7:7795. PubMed doi:10.1016/S0966-6362(97)00038-6.

  • 30.

    Quatman-Yates CCMyer GDFord KRHewett TE. A longitudinal evaluation of maturational effects on lower extremity strength in female adolescent athletes. Pediatr Phys Ther. 2013;25:2716. PubMed doi:10.1097/PEP.0b013e31828e1e9d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Schache AGBlanch PDDorn TWBrown NARosemond DPandy MG. Effect of running speed on lower limb joint kinetics. Med Sci Sports Exerc. 2011;43:126071. PubMed doi:10.1249/MSS.0b013e3182084929

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Schantz PRandall-Fox EHutchison WTydén AAstrand PO. Muscle fibre type distribution, muscle cross-sectional area and maximal voluntary strength in humans. Acta Physiol Scand. 1983;117:21926. PubMed doi:10.1111/j.1748-1716.1983.tb07200.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Stafilidis SArampatzis A. Muscle-tendon unit mechanical and morphological properties and sprint performance. J Sports Sci. 2007;25:103546. PubMed doi:10.1080/02640410600951589

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Sugisaki NKanehisa HTauchi KOkazaki SIso SOkada J. The relationship between 30-m sprint running time and muscle cross-sectional areas of the psoas major and lower limb muscles in male college short and middle distance runners. Int J Sport Health Sci. 2011;9:17. doi:10.5432/ijshs.20100018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Tompuri TTLakka TAHakulinen Met al. Assessment of body composition by dual-energy X-ray absorptiometry, bioimpedance analysis and anthropometrics in children: the Physical Activity and Nutrition in Children study. Clin Physiol Functi Imaging. 2015;35:2133. PubMed doi:10.1111/cpf.12118

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Vaeyens RLenoir MWilliams AMPhilippaerts RM. Talent identification and development programmes in sport: current models and future directions. Sports Med. 2008;38:70314. PubMed doi:10.2165/00007256-200838090-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Weyand PGSternlight DBBellizzi MJWright S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol. 2000;89:19919. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 49 49 39
Full Text Views 1 1 1
PDF Downloads 0 0 0

Altmetric Badge

PubMed

Google Scholar