Measurement and Interpretation of Maximal Aerobic Power in Children

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

The assessment of maximal aerobic power (V˙O2max) in both children and adults is an invaluable tool for the evaluation of exercise performance capacity and general physical fitness in clinical, athletic, public health, and research applications. The complexity of means and considerations, as well as varying specific aims of V˙O2max testing, has prevented the formulation of a universally applicable, standard testing protocol, in general, and for children in particular. Numerous tester-controllable factors, such as exercise modality, metabolic measurement system, testing protocol, or data reduction strategies, can affect both the measurement and interpretation of V˙O2max data. Although the general guiding principles are similar, children differ from adults in several aspects. One notable difference is the frequent absence of a discernible V˙O2 plateau in children. Thus, the proper choice of equipment and procedures may be different for children than for adults. It is therefore the aim of this article to highlight the general and pediatric-specific considerations that may affect V˙O2max measurement and interpretation of results.

Falk is with the Faculty of Applied Health Sciences, Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St Catharines, Ontario, Canada. Dotan is with the Faculty of Applied Health Sciences, Brock University, St Catharines, Ontario, Canada.

Falk (bfalk@brocku.ca) is corresponding author.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Armstrong Nvan Mechelen W. Oxford Textbook of Children’s Sport and Exercise Medicine. 3rd ed. Oxford, UK: Oxford University Press; 2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Armstrong NWilliams JBalding JGentle PKirby B. The peak oxygen uptake of British children with reference to age, sex and sexual maturity. Eur J Appl Physiol Occup Physiol. 1991;62(5):36975. PubMed ID: 1874245 doi:10.1007/BF00634975

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ashish NBamman MMCerny FJet al. The clinical translation gap in child health exercise research: a call for disruptive innovation. Clin Transl Sci. 2015;8(1):6776. PubMed ID: 25109386 doi:10.1111/cts.12194

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Astrand PO. Experimental Studies of Physical Work Capacity in Relation to Sex and Age. Copenhagen, Denmark: Mundsgaard; 1952.

  • 5.

    Azevedo PBhammar DMBabb TGet al. Commentaries on viewpoint: V˙O2peak is an acceptable estimate of cardiorespiratory fitness but not V˙O2max. J Appl Physiol. 2018;125(1):23340. doi:10.1152/japplphysiol.00319.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Baquet Gvan Praagh EBerthoin S. Endurance training and aerobic fitness in young people. Sports Med. 2003;33(15):112743. PubMed ID: 14719981 doi:10.2165/00007256-200333150-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Barker ARWilliams CAJones AMArmstrong N. Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion. Br J Sports Med. 2011;45(6):498503. PubMed ID: 19679577 doi:10.1136/bjsm.2009.063180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bar-Or O. Pediatric Sports Medicine for the Practitioner. New York, UK: Springer-Verlag; 1983.

  • 9.

    Bar-Or ORowland T. Pediatric Exercise Medicine. Champaign, IL: Human Kinetics; 2004.

  • 10.

    Blanchard JBlais SChetaille Pet al. New reference values for cardiopulmonary exercise testing in children. Med Sci Sports Exerc. 2018;50(6):112533. PubMed ID: 29346167 doi:10.1249/MSS.0000000000001559

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Capellini IVenditti CBarton RA. Phylogeny and metabolic scaling in mammals. Ecology. 2010;91(9):278393. PubMed ID: 20957970 doi:10.1890/09-0817.1

  • 12.

    Cooper DMLeu SYGalassetti PRadom-Aizik S. Dynamic interactions of gas exchange, body mass, and progressive exercise in children. Med Sci Sports Exerc. 2014;46(5):87786. PubMed ID: 24091992 doi:10.1249/MSS.0000000000000180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cooper DMWeiler-Ravell DWhipp BJWasserman K. Growth-related changes in oxygen uptake and heart rate during progressive exercise in children. Pediatr Res. 1984;18(9):84551. PubMed ID: 6483507 doi:10.1203/00006450-198409000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Dotan R. Children’s aerobic trainability and related questions. Res Q Exerc Sport. 2017;88(4):37783. PubMed ID: 28967843 doi:10.1080/02701367.2017.1371546

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Geithner CAThomis MAVanden Eynde Bet al. Growth in peak aerobic power during adolescence. Med Sci Sports Exerc. 2004;36(9):161624. PubMed ID: 15354046 doi:10.1249/01.MSS.0000139807.72229.41

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Godfrey SDavies CTWozniak EBarnes CA. Cardio-respiratory response to exercise in normal children. Clin Sci. 1971;40(5):41931. PubMed ID: 5556096 doi:10.1042/cs0400419

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gomes ELCarvalho CRPeixoto-Souza FSet al. Active video game exercise training improves the clinical control of asthma in children: Randomized controlled trial. PLoS ONE. 2015;10(8):0135433. PubMed ID: 26301706 doi:10.1371/journal.pone.0135433

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Green SAskew C. V˙O2peak is an acceptable estimate of cardiorespiratory fitness but not VO2max. J Appl Physiol. 2018;125(1):22932. doi:10.1152/japplphysiol.00850.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hebestreit HStaschen BHebestreit A. Ventilatory threshold: a useful method to determine aerobic fitness in children? Med Sci Sports Exerc. 2000;32(11):19649. PubMed ID: 11079529 doi:10.1097/00005768-200011000-00022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Inbar OBar-Or O. The effects of intermittent warm-up on 7–9 year-old boys. Eur J Appl Physiol Occup Physiol. 1975;34(2):819. PubMed ID: 1193092 doi:10.1007/BF00999919

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    James FWBlomqvist CGFreed MDet al. Standards for exercise testing in the pediatric age group. American Heart Association Council on Cardiovascular Disease in the Young. Ad hoc committee on exercise testing. Circulation. 1982;66(6):1377A97A. PubMed ID: 7139910

    • Search Google Scholar
    • Export Citation
  • 22.

    James FWKaplan SGlueck CJTsay JYKnight MJSarwar CJ. Responses of normal children and young adults to controlled bicycle exercise. Circulation. 1980;61(5):90212. PubMed ID: 7363434 doi:10.1161/01.CIR.61.5.902

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Janz KFBurns TLWitt JDMahoney LT. Longitudinal analysis of scaling VO2 for differences in body size during puberty: the Muscatine study. Med Sci Sports Exerc. 1998;30(9):143644. PubMed ID: 9741614

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kamon EPandolf KB. Maximal aerobic power during laddermill climbing, uphill running, and cycling. J Appl Physiol. 1972;32(4):46773. PubMed ID: 5026493 doi:10.1152/jappl.1972.32.4.467

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kemper HCvan Mechelen WPost GBet al. The Amsterdam growth and health longitudinal study. The past (1976–1996) and future (1997–?). Int J Sports Med. 1997;18(suppl 3):S14050. doi:10.1055/s-2007-972707

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kleiber M. Body size and metabolic rate. Physiol Rev. 1947;27(4):51141. PubMed ID: 20267758 doi:10.1152/physrev.1947.27.4.511

  • 27.

    Krahenbuhl GSSkinner JSKohrt WM. Developmental aspects of maximal aerobic power in children. Exerc Sport Sci Rev. 1985;13:50338. PubMed ID: 3891374 doi:10.1249/00003677-198500130-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    LeMura LMvon Duvillard SPCohen SLet al. Treadmill and cycle ergometry testing in 5- to 6-year-old children. Eur J Appl Physiol. 2001;85(5):4728. PubMed ID: 11606017 doi:10.1007/s004210100461

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    McManus AMArmstrong N. Maximal oxygen uptake. In: Rowland TW ed. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign, IL: Human Kinetics; 2018:7994.

    • Search Google Scholar
    • Export Citation
  • 30.

    Midgley AWCarroll SMarchant DMcNaughton LRSiegler J. Evaluation of true maximal oxygen uptake based on a novel set of standardized criteria. Applied Physiology Nutrition and Metabolism = Physiologie Appliquee Nutrition Et Metabolisme. 2009;34(2):11523. PubMed ID: 19370041 doi:10.1139/H08-146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mirwald RLBailey DACameron NRasmussen RL. Longitudinal comparison of aerobic power in active and inactive boys aged 7.0 to 17.0 years. Ann Hum Biol. 1981;8(5):40514. PubMed ID: 7294718 doi:10.1080/03014468100005231

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Nevill AMHolder RL. Scaling, normalizing, and per ratio standards: an allometric modeling approach. J Appl Physiol. 1995;79(3):102731. doi:10.1152/jappl.1995.79.3.1027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nixon PAOrenstein DMKelsey SFDoershuk CF. The prognostic value of exercise testing in patients with cystic fibrosis. N Engl J Med. 1992;327(25):17858. PubMed ID: 1435933 doi:10.1056/NEJM199212173272504

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Paridon SMAlpert BSBoas SRet al. Clinical stress testing in the pediatric age group: a statement from the American Heart Association Council on cardiovascular disease in the young, committee on atherosclerosis, hypertension, and obesity in youth. Circulation. 2006;113(15):190520. PubMed ID: 16567564 doi:10.1161/CIRCULATIONAHA.106.174375

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Paterson DHCunningham DADonner A. The effect of different treadmill speeds on the variability of V˙O2max in children. Eur J Appl Physiol Occup Physiol. 1981;47(2):11322. PubMed ID: 7197211 doi:10.1007/BF00421663

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Pfeiffer KALobelo FWard DPate R. Endurance trainability of children and youth. In: Heberstreit HBar-Or O eds. The Young Athlete. Oxford, UK: Blackwell Publishing Ltd; 2008:8495.

    • Search Google Scholar
    • Export Citation
  • 37.

    Pianosi PTLiem RIMcMurray RGCerny FJFalk BKemper HC. Pediatric exercise testing: value and implications of peak oxygen uptake. Children. 2017;4(1):6. PubMed ID: 28125022 doi:10.3390/children4010006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Poole DCJones AM. Measurement of the maximum oxygen uptake V˙O2max:V˙O2peak is no longer acceptable. J Appl Physiol. 2017;122(4):9971002. doi:10.1152/japplphysiol.01063.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Poole DCWilkerson DPJones AM. Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur J Appl Physiol. 2008;102(4):40310. PubMed ID: 17968581 doi:10.1007/s00421-007-0596-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Rowland TW. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign, IL: Human Kinetics; 2018.

  • 41.

    Rowland TW. Does peak V˙O2 reflect V˙O2max in children? Evidence from supramaximal testing. Med Sci Sports Exerc. 1993;25(6):68993. PubMed ID: 8321105 doi:10.1249/00005768-199306000-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Rowland TWCunningham LN. Oxygen uptake plateau during maximal treadmill exercise in children. Chest. 1992;101(2):4859. PubMed ID: 1735277 doi:10.1378/chest.101.2.485

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Sabath RJWhite DATenson KM. Exercise testing protocols. In: Rowland TW ed. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign, IL: Human Kinetics; 2018:2340.

    • Search Google Scholar
    • Export Citation
  • 44.

    Schmidt-Nielsen K. Scaling: Why is Animal Size so Important. Cambridge, UK: Cambridge University Press; 1984.

  • 45.

    Swain DPWilcox JP. Effect of cadence on the economy of uphill cycling. Med Sci Sports Exerc. 1992;24(10):11237. PubMed ID: 1435159 doi:10.1249/00005768-199210000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Turley KRRogers DMHarper KMKujawa KIWilmore JH. Maximal treadmill versus cycle ergometry testing in children: differences, reliability and variability of responses. Pediatr Exerc Sci. 1995;7:4960. doi:10.1123/pes.7.1.49

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Turley KRWilmore JH. Cardiovascular responses to treadmill and cycle ergometer exercise in children and adults. J Appl Physiol. 1997;83(3):94857. PubMed ID: 9292484 doi:10.1152/jappl.1997.83.3.948

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    van der Cammen-van Zijp MHIjsselstijn HTakken Tet al. Exercise testing of pre-school children using the Bruce treadmill protocol: new reference values. Eur J Appl Physiol. 2010;108(2):3939. PubMed ID: 19821120 doi:10.1007/s00421-009-1236-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Welsman JArmstrong N. Interpreting aerobic fitness in youth: the fallacy of ratio scaling. Pediatr Exerc Sci. 2019;31(2). doi:10.1123/pes.2018-0141

  • 50.

    Welsman JRArmstrong NNevill AMWinter EMKirby BJ. Scaling peak V˙O2 for differences in body size. Med Sci Sports Exerc. 1996;28(2):25965. PubMed ID: 8775163 doi:10.1097/00005768-199602000-00016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    West GBBrown JHEnquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276(5309):1226. PubMed ID: 9082983 doi:10.1126/science.276.5309.122

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Yeh MPGardner RMAdams TDYanowitz FGCrapo RO. “Anaerobic threshold”: problems of determination and validation. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(4):117886. PubMed ID: 6629951

    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 102 102 15
Full Text Views 35 35 5
PDF Downloads 19 19 7
Altmetric Badge
PubMed
Google Scholar
Cited By