Effects of Acute Physical Exercise With Low and High Cognitive Demands on Executive Functions in Children: A Systematic Review

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Purpose: Whereas many studies addressed the relation between acute physical exercise and executive functions (EF) in children, the effects of various modalities of acute exercise on EF still remain unclear. This systematic review investigated the effects of exercise with low and high cognitive demands on speed of processing and accuracy of performance in tasks examining inhibition, working memory, and cognitive flexibility in children. Method: A systematic literature research in electronic databases was performed. Controlled trials assessing the effects of acute exercise on EF in a pre–post design were included. Results: Ten studies involving a total of 890 participants revealed positive effects in working memory performance in speed of processing after acute exercises with low cognitive demands compared with seated rest, mixed results for inhibition after exercises with low and high cognitive demands, and mixed results for cognitive flexibility with low cognitive demands. Concerning accuracy, only mixed results were found for inhibition after exercises with low and high cognitive demands. Conclusion: The differentiated effects of acute exercises with low and high cognitive demands led to more positive effects in speed of processing compared with accuracy of performance. Further investigations including assessment of neurophysiological parameters of EF are needed.

Paschen, Lehmann, and Baumeister are with Exercise Science and Neuroscience Unit, Department of Exercise & Health, Paderborn University, Paderborn, Germany. Kehne is with the Didactics of Sports, Department of Exercise & Health, Paderborn University, Paderborn, Germany.

Paschen (linda.paschen@upb.de) is corresponding author.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Ainsworth BEHaskell WLHerrmann SDet al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sport Exerc. 2011;43:157581. doi:10.1249/MSS.0b013e31821ece12

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Ainsworth BEHaskell WLWhitt MCet al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sport Exerc. 2000;32 9 Suppl :S498516. PubMed ID: 10993420 doi:10.1097/00005768-200009001-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Best JR. Effects of physical activity on children’s executive function: contributions of experimental research on aerobic exercise. Dev Rev. 2010;30(4):33151. PubMed ID: 21818169 doi:10.1016/j.dr.2010.08.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Best JRMiller PH. A developmental perspective on executive function. Child Dev. 2010;81(6):164160. PubMed ID: 21077853 doi:10.1111/j.1467-8624.2010.01499.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Best JRMiller PHJones LL. Executive functions after age 5 : changes and correlates. Dev Rev. 2009;29(3):180200. PubMed ID: 20161467 doi:10.1016/j.dr.2009.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Chen A-GYan JYin H-CPan C-YChang Y-K. Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychol Sport Exerc. 2014;15(6):62736. doi:10.1016/j.psychsport.2014.06.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    de Greeff JWBosker RJOosterlaan JVisscher CHartman E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: a meta-analysis. J Sci Med Sport. 2018;21(5):5017. PubMed ID: 29054748 doi:10.1016/j.jsams.2017.09.595

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):4456. PubMed ID: 10836557 doi:10.1111/1467-8624.00117

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Diamond A. The early development of executive functions. In: Bialystok ECraik FIM editors. Lifespan Cognition: Mechanisms of Change. New York, NY: Oxford University Press; 2006 pp. 7095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Diamond A. Executive functions. Annu Rev Psychol. 2013;64:13568. doi:10.1146/annurev-psych-113011-143750

  • 11.

    Diamond A. Effects of physical exercise on executive functions: going beyond simply moving to moving with thought. Ann Sport Med Res. 2015;2(1):1011.

    • Search Google Scholar
    • Export Citation
  • 12.

    Diamond A. Why improving and assessing executive functions early in life is critical. In: Griffin JAMcCardle PFreund LS editors. Executive Function in Preschool-Age Children: Integrating Measurement Neurodevelopment and Translational Research. Washington, DC: American Psychological Association; 2016 pp. 1143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Donnelly JEHillman CHCastelli Det al. Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Med Sci Sports Exerc. 2016;48(6):1197222. PubMed ID: 27182986 doi:10.1249/MSS.0000000000000901

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Egger FConzelmann ASchmidt M. The effect of acute cognitively engaging physical activity breaks on children’s executive functions: too much of a good thing? Psychol Sport Exerc. 2018;36:17886. doi:10.1016/j.psychsport.2018.02.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Ellemberg DSt-Louis-Deschênes M. The effect of acute physical exercise on cognitive function during development. Psychol Sport Exerc. 2010;11(2):1226. doi:10.1016/j.psychsport.2009.09.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Engelhardt LEHarden KPTucker-Drob EMChurch JA. The neural architecture of executive functions is established by middle childhood. Neuroimage. 2019;185:47989. PubMed ID: 30312810 doi:10.1016/j.neuroimage.2018.10.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gallotta MCEmerenziani GPFranciosi EMeucci MGuidetti LBaldari C. Acute physical activity and delayed attention in primary school students. Scand J Med Sci Sports. 2015;25(3):e3318. PubMed ID: 25134779 doi:10.1111/sms.12310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Gallotta MCGuidetti LFranciosi EEmerenziani GPBonavolontá VBaldari C. Effects of varying type of exertion on children’s attention capacity. Med Sci Sport Exerc. 2012;44(3):5505. doi:10.1249/MSS.0b013e3182305552

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Giedd JNBlumenthal JJeffries NOet al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2(10):8613. PubMed ID: 10491603 doi:10.1038/13158

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gogtay NGiedd JNLusk Let al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA. 2004;101(21):81749. PubMed ID: 15148381 doi:10.1073/pnas.0402680101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Higgins JPAltman DGSterne JA. Assessing risk of bias in included studies. In: Higgins JPChurchill RChandler JCumpston M editors. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.2.0 (updated June 2017); Cochrane; 2017:8:18:73. www.training.cochrane.org/handbook

    • Search Google Scholar
    • Export Citation
  • 22.

    Hillman CHErickson KIKramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9(1):5865. PubMed ID: 18094706 doi:10.1038/nrn2298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hillman CHKamijo KScudder M. A review of chronic and acute physical activity participation on neuroelectric measures of brain health and cognition during childhood. Prev Med. 2011;52 Suppl 1:S218. doi:10.1016/j.ypmed.2011.01.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Jäger KSchmidt MConzelmann ARoebers CM. Cognitive and physiological effects of an acute physical activity intervention in elementary school children [Internet]. Front Psychol. 2014;5:1473. doi:10.3389/fpsyg.2014.01473

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Janssen MChinapaw MJMRauh SPToussaint HMvan Mechelen WVerhagen EALM. A short physical activity break from cognitive tasks increases selective attention in primary school children aged 10–11. Mental Health Phys Act. 2014;7(3 Suppl I):12934. doi:10.1016/j.mhpa.2014.07.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Ludyga SGerber MBrand SHolsboer-Trachsler EPühse U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: a meta-analysis. Psychophysiology. 2016;53:161126. PubMed ID: 27556572 doi:10.1111/psyp.12736

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Meltzer L. Executive Function in Education: From Theory to Practice. New York, NY: The Guilford Press; 2007.

  • 28.

    Mierau AHülsdünker TMierau JHense AHense JStrüder HK. Acute exercise induces cortical inhibition and reduces arousal in response to visual stimulation in young children. Int J Dev Neurosci. 2014;34:18. PubMed ID: 24412583 doi:10.1016/j.ijdevneu.2013.12.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Miyake AFriedman NPEmerson MJWitzki AHHowerter AWager TD. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41(1):49100. PubMed ID: 10945922 doi:10.1006/cogp.1999.0734

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Moher DShamseer LClarke Met al. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):19. doi:10.1186/2046-4053-4-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Niemann CWegner MVoelcker-Rehage CHolzweg MArafat AMBudde H. Influence of acute and chronic physical activity on cognitive performance and saliva testosterone in preadolescent school children. Mental Health Phys Act. 2013;6(3 SI):197204. doi:10.1016/j.mhpa.2013.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Perrey SBesson P. Studying brain activity in sports performance: Contributions and issues. 2018;240:24767.

  • 33.

    Pesce C. Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. J Sport Exerc Psychol. 2012;34(6):76686. PubMed ID: 23204358 doi:10.1123/jsep.34.6.766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Piepmeier ATEtnier JL. Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. J Sport Health Sci. 2015;4(1):1423. doi:10.1016/j.jshs.2014.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Rusnáková ŠRektor I. The neurocognitive networks of the executive functions. In: Ajeena I editor. Advances in Clinical Neurophysiology; Croatia: InTech. 2012:16170. doi:10.5772/51602

    • Search Google Scholar
    • Export Citation
  • 36.

    Sibley BAEtnier JL. The relationship between physical activity and cognition in children : a meta-analysis. Pediatr Exerc Sci. 2003;15:24356. doi:10.1123/pes.15.3.243

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Tomporowski PDMcCullick BPendleton DMPesce C. Exercise and children’s cognition: the role of exercise characteristics and a place for metacognition. J Sport Health Sci. 2015;4(1):4755. doi:10.1016/j.jshs.2014.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Vazou SSmiley-Oyen A. Moving and academic learning are not antagonists: acute effects on executive function and enjoyment. J Sport Exerc Psychol. 2014;36(5):47485. PubMed ID: 25356611 doi:10.1123/jsep.2014-0035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Verburgh LKönigs MScherder EJAOosterlaan J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. Br J Sports Med. 2014;48:9739. PubMed ID: 23467962 doi:10.1136/bjsports-2012-091441

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 142 142 67
Full Text Views 10 10 7
PDF Downloads 6 6 4
Altmetric Badge
PubMed
Google Scholar