Intracranial Vascular Responses to High-Intensity Interval Exercise and Moderate-Intensity Steady-State Exercise in Children

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Purpose: To understand the extent different types of acute exercise influence cerebral blood flow during and following exercise in children. Methods: Eight children (7–11 y; 4 girls) completed 2 conditions: high-intensity interval exercise (HIIE; 6 × 1-min sprints at 90% watt maximum) and moderate-intensity steady-state exercise (MISS; 15 min at 44% watt maximum). Blood velocity in the middle cerebral artery (MCAV) and heart rate were assessed continuously. The partial pressure of end-tidal carbon dioxide and mean arterial pressure were assessed at baseline and following exercise. Results: Percentage of maximum heart rate during HIIE was 82% (4%), compared with 69% (4%) during MISS. MCAV was increased above baseline in MISS after 75 seconds (5.8% [3.9%], P × .004) but was unchanged during HIIE. MCAV was reduced below baseline (−10.7% [4.1%], P × .004) during the sixth sprint of HIIE. In both conditions, MCAV remained below baseline postexercise, but returned to baseline values 30-minute postexercise (P < .001). A postexercise increase in mean arterial pressure was apparent following HIIE and MISS, and persisted 30-minute postexercise. Partial pressure of end-tidal carbon dioxide declined post HIIE (−3.4 mm Hg, P < .05), but not following MISS. Conclusion: These preliminary findings show HIIE and MISS elicit differing intracranial vascular responses; however, research is needed to elucidate the implications and underlying regulatory mechanisms of these responses.

The authors are with Centre for Heart, Lung & Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, Canada.

Tallon (christine.tallon@ubc.ca) is corresponding author.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Altenburg TMChinapaw MJSingh AS. Effects of one versus two bouts of moderate intensity physical activity on selective attention during a school morning in Dutch primary schoolchildren: a randomized controlled trial. J Sci Med Sport. 2016;19(10):8204. PubMed ID: 26724833 doi:10.1016/j.jsams.2015.12.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Atkinson CLCarter HHDawson EANaylor LHThijssen DHGreen DJ. Impact of handgrip exercise intensity on brachial artery flow-mediated dilation. Eur J Appl Physiol. 2015;115(8):170513. PubMed ID: 25805181 doi:10.1007/s00421-015-3157-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Barker ARWilliams CAJones AMArmstrong N. Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion. Br J Sports Med. 2011;45(6):498503. PubMed ID: 19679577 doi:10.1136/bjsm.2009.063180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Billinger SACraig JCKwapiszeski SJSisante JVVidoni EDMaletsky RPoole DC. Dynamics of middle cerebral artery blood flow velocity during moderate-intensity exercise. J Appl Physiol. 2017;122(5):112533. doi:10.1152/japplphysiol.00995.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bond BHind SWilliams CABarker AR. The acute effect of exercise intensity on vascular function in adolescents. Med Sci Sports Exerc. 2015;47(12):262835. PubMed ID: 26057942 doi:10.1249/MSS.0000000000000715

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Carter HHAtkinson CLHeinonen IHet al. Evidence for shear stress-mediated dilation of the internal carotid artery in humans. Hypertension. 2016;68(5):121724. PubMed ID: 27572152 doi:10.1161/HYPERTENSIONAHA.116.07698

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Coverdale NSGati JSOpalevych OPerrotta AShoemaker JK. Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia. J Appl Physiol. 2014;117(10):10906. doi:10.1152/japplphysiol.00285.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Curtelin DMorales-Alamo DTorres-Peralta Ret al. Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans. J Cereb Blood Flow Metab. 2017;38(1):13650. PubMed ID: 28186430 doi:10.1177/0271678X17691986

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Dawson EACable NTGreen DJThijssen DHJ. Do acute effects of exercise on vascular function predict adaptation to training? Eur J Appl Physiol. 2018;118(3):52330. PubMed ID: 29234916 doi:10.1007/s00421-017-3724-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Drollette ESShishido TPontifex MBHillman CH. Maintenance of cognitive control during and after walking in preadolescent children. Med Sci Sports Exerc. 2012;44(10):201724. PubMed ID: 22525770 doi:10.1249/MSS.0b013e318258bcd5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ellis LAAinslie PNArmstrong VAet al. Anterior cerebral blood velocity and end-tidal CO2 responses to exercise differ in children and adults. Am J Physiol Heart Circ Physiol. 2017;312(6):H1195202. PubMed ID: 28389601 doi:10.1152/ajpheart.00034.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Fisher JPHartwich DSeifert Tet al. Cerebral perfusion, oxygenation and metabolism during exercise in young and elderly individuals. J Physiol. 2013;591(7):185970. PubMed ID: 23230234 doi:10.1113/jphysiol.2012.244905

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Fisher JPOgoh SYoung CNRaven PBFadel PJ. Regulation of middle cerebral artery blood velocity during dynamic exercise in humans: influence of aging. J Appl Physiol. 2008;105(1):26673. doi:10.1152/japplphysiol.00118.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hillman CHPontifex MBRaine LBCastelli DMHall EEKramer AF. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience. 2009;159(3):104454. PubMed ID: 19356688 doi:10.1016/j.neuroscience.2009.01.057

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hoiland RLSmith KJCarter HHet al. Shear-mediated dilation of the internal carotid artery occurs independent of hypercapnia. Am J Physiol Heart Circ Physiol. 2017;313(1):H2431. PubMed ID: 28389602 doi:10.1152/ajpheart.00119.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Lautenschlager NTCox KCyarto EV. The influence of exercise on brain aging and dementia. Biochim Biophys Acta. 2012;1822(3):47481. PubMed ID: 21810472 doi:10.1016/j.bbadis.2011.07.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Leatherdale STAhmed R. Screen-based sedentary behaviours among a nationally representative sample of youth: are Canadian kids couch potatoes? Chronic Dis Inj Can. 2011;31(4):1416. PubMed ID: 21978636

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Markus HSBoland M. “Cognitive activity” monitored by non-invasive measurement of cerebral blood flow velocity and its application to the investigation of cerebral dominance. Cortex. 1992;28(4):57581. PubMed ID: 1478085 doi:10.1016/S0010-9452(13)80228-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mills ARosenberg MStratton Get al. The effect of exergaming on vascular function in children. J Pediatr. 2013;163(3):80610. PubMed ID: 23684507 doi:10.1016/j.jpeds.2013.03.076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Mundel TPerry BGAinslie PNet al. Postexercise orthostatic intolerance: influence of exercise intensity. Exp Physiol. 2015;100(8):91525. PubMed ID: 26040636 doi:10.1113/EP085143

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Rasmussen ARWohlfahrt-Veje CTefre de Renzy-Martin Ket al. Validity of self-assessment of pubertal maturation. Pediatrics. 2015;135(1):8693. PubMed ID: 25535262 doi:10.1542/peds.2014-0793

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Rauber SBBoullosa DACarvalho FOet al. Traditional games resulted in post-exercise hypotension and a lower cardiovascular response to the cold pressor test in healthy children. Front Physiol. 2014;5(235):17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Satterthwaite TDShinohara RTWolf DHet al. Impact of puberty on the evolution of cerebral perfusion during adolescence. Proc Natl Acad Sci U S A. 2014;111(23):86438. PubMed ID: 24912164 doi:10.1073/pnas.1400178111

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Smith KJAinslie PN. Regulation of cerebral blood flow and metabolism during exercise. Exp Physiol. 2017;102(11):135671. PubMed ID: 28786150 doi:10.1113/EP086249

  • 25.

    Smith KJHoiland RLGrove Ret al. Matched increases in cerebral artery shear stress, irrespective of stimulus, induce similar changes in extra-cranial arterial diameter in humans [published online ahead of print January 1 2017]. J Cereb Blood Flow Metab. PubMed ID: 29125372 doi:10.1177/0271678X17739220

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Szabo-Reed ANWillis EALee JHillman CHWashburn RADonnelly JE. Impact of three years of classroom physical activity bouts on time-on-task behavior. Med Sci Sports Exerc. 2017;49(11):234350. PubMed ID: 28614194 doi:10.1249/MSS.0000000000001346

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Taddei SVerdis AGhidoni LMagagna ASalvetti A. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation. 1998;97:22229. PubMed ID: 9631871 doi:10.1161/01.CIR.97.22.2222

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Verbree JBronzwaer Avan Buchem MADaemen Mvan Lieshout JJvan Osch M. Middle cerebral artery diameter changes during rhythmic handgrip exercise in humans. J Cereb Blood Flow Metab. 2017;37(8):29217. PubMed ID: 27837189 doi:10.1177/0271678X16679419

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Verbree JBronzwaer ASGhariq Eet al. Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. J Appl Physiol. 2014;117(10):10849. doi:10.1152/japplphysiol.00651.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Vogel RACorretti MCPlotnick GD. Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol. 1997;79:3504. PubMed ID: 9036757 doi:10.1016/S0002-9149(96)00760-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Willie CKColino FLBailey DMet al. Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. J Neurosci Methods. 2011;196(2):22137. PubMed ID: 21276818 doi:10.1016/j.jneumeth.2011.01.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 62 62 41
Full Text Views 12 12 8
PDF Downloads 8 8 5
Altmetric Badge
PubMed
Google Scholar