Repeated Sprint Protocols With Standardized Versus Self-Selected Recovery Periods in Elite Youth Soccer Players: Can They Pace Themselves? A Replication Study

in Pediatric Exercise Science
View More View Less
  • 1 Integrative and Experimental Training Science, Institute for Sport Sciences, University of Würzburg, Wurzburg, Germany
  • | 2 Department for Performance Analysis, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
  • | 3 TSG ResearchLab gGmbH, Zuzenhausen, Germany
  • | 4 High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
  • | 5 Activité Physique, Sport et Santé, Observatoire National du Sport, Tunis, Tunisia
  • | 6 Institute of Movement and Sport, Karlsruhe University of Education, Karlsruhe, Germany
  • | 7 Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $70.00

1 year online subscription

USD  $94.00

Student 2 year online subscription

USD  $134.00

2 year online subscription

USD  $178.00

Purpose: Replicating the studies of Gibson et al and Brownstein et al to assess performance, and physiological, and perceived variables during a repeated sprint protocol (RSP) with standardized versus self-selected recovery in youth soccer players. Methods: Nineteen male soccer players (age 13.1 [1.3] y) completed 2 separate RSPs. RSP1: 10 × 30-m sprints with 30-second recovery and RSP2: 10 × 30-m sprints interspersed with self-selected recovery periods. Mean time of both 10 × 30-m RSPs and self-selected recovery periods of RSP2 were assessed. Heart rate, blood lactate concentration, and rates of perceived exertion were measured following RSPs. Results: RSP2 revealed longer recovery periods (RSP1: 30.0 [0.0] s; RSP2: 39.0 [7.7] s; P < .001; effect size d = 1.648) with shorter repeated sprint time (mean 30-m sprint time: RSP1: 4.965 [0.256] s; RSP2: 4.865 [0.227] s; P = .014; d = 0.414). Blood lactate concentration (P = .002–.005; d = 0.730–0.958), heart rate (P < .001; d = 1.353), and rates of perceived exertion (RSP1: 14.9 [1.9]; RSP2: 12.9 [2.1]; P = .016; d = 1.046) were higher following RSP1. Conclusion: In contrast to the original studies, the present replication study demonstrated that self-selected recovery periods during a RSP leads to better repeated sprint performance compared with standardized recovery periods in youth soccer players. The better repeated sprint performance with individual recovery durations in RSP2 was achieved with less physiological and perceived effort.

Engel (florian.engel@gmx.net) is corresponding author.

Supplementary Materials

    • Supplementary Material (pdf 173 KB)
  • 1.

    Altmann S, Hoffmann M, Kurz G, Neumann R, Woll A, Haertel S. Different starting distances affect 5-m sprint times. J Strength Cond Res. 2015;29(8):23616. PubMed ID: 25647648 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Altmann S, Ringhof S, Becker B, Woll A, Neumann R. Error-correction processing in timing lights for measuring sprint performance: does it work? Int J Sports Physiol Perform. 2018;13(10):14002. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Baldi M, Silva JF, Buzzachera CF, Castagna C, Guglielmo LG. Repeated sprint ability in soccer players: associations with physiological and neuromuscular factors. J Sports Med Phys Fitness. 2017;57(1–2):2632. PubMed ID: 26938571 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Batista MB, Romanzini CLP, Castro-Pinero J, Ronque ERV. Validity of field tests to estimate cardiorespiratory fitness in children and adolescents: a systematic review. Rev Paul Pediatr. 2017;35(2):22233. PubMed ID: 28977338 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Biesen V, Hettinga FJ, McCulloch K, Vanlandewijck YC. Pacing ability in elite runners with intellectual impairment. Med Sci Sports Exerc. 2017;49(3):58894. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Billaut F, Basset FA. Effect of different recovery patterns on repeated-sprint ability and neuromuscular responses. J Sports Sci. 2007;25(8):90513. PubMed ID: 17474044 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability - part II: recommendations for training. Sports Med. 2011;41(9):74156. PubMed ID: 21846163 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):37781 PubMed ID: 7154893

  • 9.

    Bradley PS, Sheldon W, Wooster B, Olsen P, Boanas P, Krustrup P. High-intensity running in English FA premier league soccer matches. J Sports Sci. 2009;27(2):15968. PubMed ID: 19153866 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Brick NE, MacIntyre TE, Campbell MJ. Thinking and action: a cognitive perspective on self-regulation during endurance performance. Front Physiol. 2016;7:159. PubMed ID: 27199774 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Brownstein CG, Ball D, Micklewright D, Gibson NV. The effect of maturation on performance during repeated sprints with self-selected versus standardized recovery intervals in youth footballers. Pediatr Exerc Sci. 2018;30(4):5005. PubMed ID: 30033816 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Buchheit M, Mendez-villanueva A, Simpson BM, Bourdon PC. Repeated-sprint sequences during youth soccer matches. Int J Sports Med. 2010;31(10):70916. PubMed ID: 20617485 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Burgomaster KA, Cermak NM, Phillips SM, Benton CR, Bonen A, Gibala MJ. Divergent response of metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. Am J Physiol Regul Integr Comp Physiol. 2007;292(5):R19706. PubMed ID: 17303684 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Carling C. Analysis of physical activity profiles when running with the ball in a professional soccer team. J Sports Sci. 2010;28(3):31926. PubMed ID: 20077273 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff PL. Metabolic response of type I and II muscle fibers during repeated bouts of maximal exercise in humans. Am J Physiol. 1996;271(1):E3843. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Chaouachi A, Manzi V, Wong del P, Chaalali A, Laurencelle L, Chamari K, et al. Intermittent endurance and repeated sprint ability in soccer players. J Strength Cond Res. 2010;24(10):26639. PubMed ID: 20847706 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ (Ed). 2nd ed. Lawrence Erlbaum Associates; 1988.

  • 18.

    Collins BW, Pearcey GEP, Buckle NCM, Power KE, Button DC. Neuromuscular fatigue during repeated sprint exercise: underlying physiology and methodological considerations. Appl Physiol Nutr Metab. 2018;43(11):116675. PubMed ID: 29701482 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Di Mascio M, Ade J, Bradley PS. The reliability, validity and sensitivity of a novel soccer-specific reactive repeated-sprint test (RRST). Eur J Appl Physiol. 2015;115(12):253142. PubMed ID: 26335624 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Di Mascio M, Ade J, Musham C, Girard O, Bradley PS. Soccer-specific reactive repeated-sprint ability in elite youth soccer players: maturation trends and association with various physical performance tests. J Strength Cond Res. 2020;34(12):353845. PubMed ID: 33237700 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Edwards AM, Polman RC. Pacing and awareness: brain regulation of physical activity. Sports Med. 2013;43(11):105764. PubMed ID: 23990402 doi:

  • 22.

    Elferink-Gemser MT, Hettinga FJ. Pacing and self-regulation: important skills for talent development in endurance sports. Int J Sports Physiol Perform. 2017;12(6):8315. PubMed ID: 28605209 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Foster C, Hendrickson KJ, Peyer K, Reiner B, deKoning JJ, Lucia A, et al. Pattern of developing the performance template. Br J Sports Med. 2009;43(10):7659. PubMed ID: 19124526 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Gaitanos GC, Williams C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol. 1993;75(2):7129. doi:

  • 25.

    Gharbi Z, Dardouri W, Haj-Sassi R, Chamari K, Souissi N. Aerobic and anaerobic determinants of repeated sprint ability in team sports athletes. Biol Sport. 2015;32(3):20712. PubMed ID: 26424923 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Gibson N, Brownstein C, Ball D, Twist C. Physiological, perceptual and performance responses associated with self-selected versus standardized recovery periods during a repeated sprint protocol in elite youth football players: a preliminary study. Pediatr Exerc Sci. 2017;29(2):18693. PubMed ID: 28050914 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability - part I: factors contributing to fatigue. Sports Med. 2011;41(8):67394. PubMed ID: 21780851 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Glaister M, Howatson G, Pattison JR, McInnes G. The reliability and validity of fatigue measures during multiple-sprint work: an issue revisited. J Strength Cond Res. 2008;22(5):1597601. PubMed ID: 18714226 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Glaister M, Witmer C, Clarke DW, Guers JJ, Heller JL, Moir GL. Familiarization, reliability, and evaluation of a multiple sprint running test using self-selected recovery periods. J Strength Cond Res. 2010;24(12):3296301. PubMed ID: 19966582 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Haugen T, Buchheit M. Sprint running performance monitoring: methodological and practical considerations. Sports Med. 2016;46(5):64156. PubMed ID: 26660758 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hill M, Scott S, Malina RM, McGee D, Cumming SP. Relative age and maturation selection biases in academy football. J Sports Sci. 2020;38(11–12):135967. PubMed ID: 31366286 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Johnson A, Farooq, A., Whiteley, R. Skeletal maturation status is a more powerful selection effect than birth quarter for elite youth academy football players. J Sci Med Sport. 2017:1(2):15763. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Juel C. Training-induced changes in membrane transport proteins of human skeletal muscle. Eur J Appl Physiol. 2006;96(6):62735. PubMed ID: 16456673 doi:

  • 34.

    Krustrup P, Mohr M, Nybo L, Jensen JM, Nielsen JJ, Bangsbo J. The Yo-Yo IR2 test: physiological response, reliability, and application to elite soccer. Med Sci Sports Exerc. 2006;38(9):166673. PubMed ID: 16960529 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Kunz P, Engel FA, Holmberg HC, Sperlich B. A meta-comparison of the effects of high-intensity interval training to those of small-sided games and other training protocols on parameters related to the physiology and performance of youth soccer players. Sports Med Open. 2019;5(1):7. PubMed ID: 30790134 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Leger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2):93101. PubMed ID: 3184250 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Little T, Williams AG. Effects of sprint duration and exercise: rest ratio on repeated sprint performance and physiological responses in professional soccer players. J Strength Cond Res. 2007;21(2):6468. PubMed ID: 17530972 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Mauger AR, Jones AM, Williams CA. Influence of feedback and prior experience on pacing during a 4-km cycle time trial. Med Sci Sports Exerc. 2009;41(2):4518. PubMed ID: 19127178 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Menting SGP, Hendry DT, Schiphof-Godart L, Elferink-Gemser MT, Hettinga FJ. Optimal development of youth athletes toward elite athletic performance: how to coach their motivation, plan exercise training, and pace the race. Front Sports Act Living. 2019;1:14. PubMed ID: 33344938 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Micklewright D, Papadopoulou E, Swart J, Noakes T. Previous experience influences pacing during 20 km time trial cycling. Br J Sports Med. 2010;44(13):95260. PubMed ID: 19364755 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Padulo J, Tabben M, Ardigo LP, Ionel M, Popa C, Gevat C, et al. Repeated sprint ability related to recovery time in young soccer players. Res Sports Med. 2015;23(4):41223. PubMed ID: 26274891 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Smits BL, Pepping GJ, Hettinga FJ. Pacing and decision making in sport and exercise: the roles of perception and action in the regulation of exercise intensity. Sports Med. 2014;44(6):76375. PubMed ID: 24706362 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Spencer M, Bishop D, Dawson B, Goodman C. Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med. 2005;35(12):102544. PubMed ID: 16336007 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Spencer M, Pyne D, Santisteban J, Mujika I. Fitness determinants of repeated-sprint ability in highly trained youth football players. Int J Sports Physiol Perform. 2011;6(4):497508. PubMed ID: 21937759 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Walker S. A one-day field test battery for the assessment of aerobic capacity, anaerobic capacity, speed, and agility of soccer players. J Strength Cond Res. 2009:31(6):5260. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Wiersma R, Stoter IK, Visscher C, Hettinga FJ, Elferink-Gemser MT. Development of 1500-m pacing behavior in junior speed skaters: a longitudinal study. Int J Sports Physiol Perform. 2017;12(9):122431. PubMed ID: 28253043 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 281 281 115
Full Text Views 3 3 1
PDF Downloads 4 4 1