Gut Microbiota Composition Is Related to Cardiorespiratory Fitness in Healthy Young Adults

Click name to view affiliation

Ryan P. Durk San Francisco State University

Search for other papers by Ryan P. Durk in
Current site
Google Scholar
PubMed
Close
*
,
Esperanza Castillo San Francisco State University

Search for other papers by Esperanza Castillo in
Current site
Google Scholar
PubMed
Close
*
,
Leticia Márquez-Magaña San Francisco State University

Search for other papers by Leticia Márquez-Magaña in
Current site
Google Scholar
PubMed
Close
*
,
Gregory J. Grosicki Tufts University
Georgia Southern University

Search for other papers by Gregory J. Grosicki in
Current site
Google Scholar
PubMed
Close
*
,
Nicole D. Bolter San Francisco State University

Search for other papers by Nicole D. Bolter in
Current site
Google Scholar
PubMed
Close
*
,
C. Matthew Lee San Francisco State University

Search for other papers by C. Matthew Lee in
Current site
Google Scholar
PubMed
Close
*
, and
James R. Bagley San Francisco State University

Search for other papers by James R. Bagley in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Bacteria residing in the human gastrointestinal tract has a symbiotic relationship with its host. Animal models have demonstrated a relationship between exercise and gut microbiota composition. This was the first study to explore the relationship between cardiorespiratory fitness (maximal oxygen consumption, VO2max) and relative gut microbiota composition (Firmicutes to Bacteroidetes ratio [F/B]) in healthy young adults in a free-living environment. Twenty males and 17 females (25.7 ± 2.2 years), who did not take antibiotics in the last 6 months, volunteered for this study. VO2max was measured using a symptom-limited graded treadmill test. Relative microbiota composition was determined by analyzing DNA extracted from stool samples using a quantitative polymerase chain reaction that specifically measured the quantity of a target gene (16S rRNA) found in Firmicutes and Bacteroidetes. Relationships between F/B and potentially related dietary, anthropometric, and fitness variables were assessed using correlation analyses with an appropriate Bonferroni adjustment (p < .004). The average F/B ratio in all participants was 0.94 ± 0.03. The F/B ratio was significantly correlated to VO2max (r = .48, p < .003), but no other fitness, nutritional intake, or anthropometric variables (p > .004). VO2max explained ∼22% of the variance of an individual’s relative gut bacteria as determined by the F/B ratio. These data support animal findings, demonstrating a relationship between relative human gut microbiota composition and cardiorespiratory fitness in healthy young adults. Gastrointestinal bacteria is integral in regulating a myriad of physiological processes, and greater insight regarding ramifications of exercise and nutrition on gut microbial composition may help guide therapies to promote human health.

Durk, Bolter, Lee, and Bagley are with the Dept. of Kinesiology, San Francisco State University, San Francisco, CA. Castillo and Márquez-Magaña are with the Health Equity Research Lab, San Francisco State University, San Francisco, CA. Grosicki is with the Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, MA; and the Dept. of Health Sciences and Kinesiology, Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA.

Address author correspondence to James R. Bagley at jrbagley@sfsu.edu.
  • Collapse
  • Expand
  • Allen, J.M., Mailing, L.J., Niemiro, G.M., Moore, R., Cook, M.D., White, B.A., . . . Woods, J.A. (2018). Exercise alters gut microbiota composition and function in lean and obese humans. Medicine and Science in Sports and Exercise, 50(4), 747757. PubMed ID: 29166320 doi:10.1249/MSS.0000000000001495

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bahl, M.I., Bergstrom, A., & Licht, T.R. (2012). Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis. FEMS Microbiology Letters, 329(2), 193197. PubMed ID: 22325006 doi:10.1111/j.1574-6968.2012.02523.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J.J., Eum, S.Y., Rampersaud, E., Daunert, S., Abreu, M.T., & Toborek, M. (2013). Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environmental Health Perspectives, 121(6), 725730. PubMed ID: 23632211 doi:10.1289/ehp.1306534

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, S.F., Murphy, E.F., O’sullivan, O., Lucey, A.J., Humphreys, M., Hogan, A., . . . Cotter, P.D. (2014). Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 63(12), 19131920. PubMed ID: 25021423 doi:10.1136/gutjnl-2013-306541

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doukhanine, E., Bouevitch, A., Brown, A., LaVecchia, J.G., Merino, C., & Pozza, L. (2016). OMNIgene®·GUT stabilizes the microbiome profile at ambient temperature for 60 days and during transport. (White Paper). Retrieved from http://www.dnagenotek.com/US/pdf/PD-WP-00042.pdf

    • Search Google Scholar
    • Export Citation
  • Doukhanine, E., Bouevitch, A., Pozza, L., & Merino, C. (2014). OMNIgene®·GUT enables reliable collection of high quality fecal samples for gut microbiome studies. (White Paper). Retrieved from http://www.dnagenotek.com/US/pdf/PD-WP-00040.pdf

    • Search Google Scholar
    • Export Citation
  • Estaki, M., Pither, J., Baumeister, P., Little, J.P., Gill, S.K., Ghosh, S., . . . Gibson, D.L. (2016). Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome, 4(1), 42. PubMed ID: 27502158 doi:10.1186/s40168-016-0189-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C.C., LePard, K.J., Kwak, J.W., Stancukas, M.C., Laskowski, S., Dougherty, J., . . . Ciancio, M.J. (2014). Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS ONE, 9(3), 92193. PubMed ID: 24670791 doi:10.1371/journal.pone.0092193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finucane, M.M., Sharpton, T.J., Laurent, T.J., & Pollard, K.S. (2014). A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS ONE, 9(1), e84689. PubMed ID: 24416266 doi:10.1371/journal.pone.0084689

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grosicki, G.J., Fielding, R.A., & Lustgarten, M.S. (2018). Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: Biological basis for a gut-muscle axis. Calcified Tissue International, 102(4), 433442. PubMed ID: 29058056 doi:10.1007/s00223-017-0345-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, X., Xia, X., Tang, R., Zhou, J., Zhao, H., & Wang, K. (2008). Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Letters in Applied Microbiology, 47(5), 367373. PubMed ID: 19146523 doi:10.1111/j.1472-765X.2008.02408.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolida, A., Syzenko, G., Moseiko, V., Budosvska, L., Puchkov, K., Perederiy, V., . . . Vaiserman, A. (2017). Association between body mass index and Firmicutes? Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiology, 17(1), 120. PubMed ID: 28532414 doi:10.1186/s12866-017-1027-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, J.E., Myslicki, J.P., Bomhof, M.R., Belke, D.D., Shearer, J., & Reimer, R.A. (2015). Exercise training modifies gut microbiota in normal and diabetic mice. Applied Physiology, Nutrition, and Metabolism, 40(7), 749752. PubMed ID: 25962839 doi:10.1139/apnm-2014-0452

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ley, R.E., Turnbaugh, P.J., Klein, S., & Gordon, J.I. (2006). Microbial ecology: Human gut microbes associated with obesity. Nature, 444(7122), 10221023. PubMed ID: 17183309 doi:10.1038/4441022a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, K.B., Leone, V., & Chang, E.B. (2017). Western diets, gut dysbiosis, and metabolic diseases: Are they linked? Gut Microbes, 8(2), 130142. PubMed ID: 28059614 doi:10.1080/19490976.2016.1270811

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, E.A., Velazquez, K.T., & Herbert, K.M. (2015). Influence of high-fat diet on gut microbiota: A driving force for chronic disease risk. Current Opinion in Clinical Nutrition and Metabolic Care, 18(5), 515520. PubMed ID: 6154278 doi:10.1097/MCO.0000000000000209

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musso, G., Gambino, R., & Cassader, M. (2011). Interactions /between gut microbiota and host metabolism predisposing to obesity and diabetes. Annual Review of Medicine, 62, 361380. PubMed ID: 21226616 doi:10.1146/annurev-med-012510-175505

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A.N., Chassard, C., Zimmermann, M., Muller, P., Stinca, S., & Lacroix, C. (2011). The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutrition and Diabetes, 1, e12. PubMed ID: 23154580 doi:10.1038/nutd.2011.8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, L., Li, Z.R., Green, R.S., Holzman, I.R., & Lin, J. (2009). Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. The Journal of Nutrition, 139(9), 16191625. PubMed ID: 19625695 doi:10.3945/jn.109.104638

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, L.M., Bautista, E.J., Nguyen, H., Hanson, B.M., Chen, L., Lek, S.H., . . . Weinstock, G.M. (2017). Community characteristics of the gut microbiomes of competitive cyclists. Microbiome, 5(1), 98. PubMed ID: 28797298 doi:10.1186/s40168-017-0320-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petriz, B.A., Castro, A.P., Almeida, J.A., Gomes, C.P., Fernandes, G.R., Kruger, R.H., . . . Franco, O.L. (2014). Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats. BMC Genomics, 15, 511. PubMed ID: 24952588 doi:10.1186/1471-2164-15-511

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Queipo-Ortuno, M.I., Seoane, L.M., Murri, M., Pardo, M., Gomez-Zumaquero, J.M., Cardona, F., . . . Tinahones, F.J. (2013). Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS ONE, 8(5), e65465. PubMed ID: 23724144 doi:10.1371/journal.pone.0065465

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sender, R., Fuchs, S., & Milo, R. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS Biology, 14(8), e1002533. PubMed ID: 27541692 doi:10.1371/journal.pbio.1002533

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M.I., Yatsunenko, T., Manary, M.J., Trehan, I., Mkakosya, R., Cheng, J., . . . Liu, J. (2013). Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science, 339(6119), 548554. PubMed ID: 23363771 doi:10.1126/science.1229000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sommer, F., & Backhed, F. (2013). The gut microbiota--masters of host development and physiology. Nature Reviews Microbiology, 11(4), 227238. PubMed ID: 23435359 doi:10.1038/nrmicro2974

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 8238 1892 166
Full Text Views 285 35 3
PDF Downloads 202 40 0