Influence of Different Inertial Loads on Basic Training Variables During the Flywheel Squat Exercise

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Rafael Sabido
Search for other papers by Rafael Sabido in
Current site
Google Scholar
PubMed
Close
,
Jose Luis Hernández-Davó
Search for other papers by Jose Luis Hernández-Davó in
Current site
Google Scholar
PubMed
Close
, and
Gabriel T. Pereyra-Gerber
Search for other papers by Gabriel T. Pereyra-Gerber in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To analyze the effects of different inertial loads on power production and power maintenance, as well as the number of sessions required for proper familiarization during the flywheel quarter-squat. Methods: Twenty-four high-level handball players attended 4 testing sessions consisting of 4 sets of 10 repetitions using 4 different inertial loads (0.025, 0.050, 0.075, and 0.100 kg·m2). In addition, a 5th set of 15 repetitions was performed. Both concentric and eccentric peak power and the eccentric:concentric ratio were recorded. Results: The results showed the need to perform 3 sessions for a proper familiarization (ie, outcomes stabilization). The inertial load of 0.025 kg·m2 led to greater concentric peak power compared with the other inertial loads (from likely to most likely greater values). Both 0.025 and 0.050 kg·m2 inertial loads entailed greater eccentric peak power compared with 0.075 and 0.100 kg·m2 (most likely greater). Conversely, the 0.025-kg·m2 inertial load showed a lower eccentric:concentric ratio, presenting negative effects (most likely lower values) compared with the inertial loads of 0.050, 0.075, and 0.100 kg·m2. Participants were able to perform 5–12 repetitions per set without significant peak power output decrements. Conclusions: This study highlights the importance of performing at least 3 sessions to obtain a stable measure during flywheel squat exercise. Lower inertial loads (0.025 kg·m2) are the better option for eliciting high concentric peak power output values. In contrast, medium to high inertial loads are more appropriate to achieve greater eccentric overload values.

The authors are with Sports Research Center, Miguel Hernández University, Elche, Spain.

Hernández-Davó (jlhdez43@gmail.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Croisier JL, Forthomme B, Namurois MH, Vanderthommen M, Crielaard JM. Hamstring muscle strain recurrence and strength performance disorders. Am J Sports Med. 2000;30(2):199203. doi:10.1177/03635465020300020901

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Hewett TE, Myer GD, Ford KR. Prevention of anterior cruciate ligament injuries. Curr Womens Health Rep. 2001;1(3):218224. PubMed

  • 3.

    Naczk M, Naczk A, Brzenczek-Owczarzak W, Arlet J, Adach Z. Impact of inertial training on strength and power performance in young active men. J Strength Cond Res. 2016;30(8):21072113. PubMed doi:10.1519/JSC.0b013e3182a993c2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Onambélé GL, Maganaris CN, Mian OS, et al. Neuromuscular and balance responses to flywheel inertial versus weight training in older persons. J Biomech. 2008;41:31333138. doi:10.1016/j.jbiomech.2008.09.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 2002;15(1):6575. doi:10.1111/j.1600-0838.2005.00443.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    de Hoyo M, Pozzo M, Sañudo B, et al. Effects of a 10-week in-season eccentric-overload training program on muscle-injury prevention and performance in junior elite soccer players. Int J Sports Physiol Perform. 2015;10(1):4652. PubMed doi:10.1123/ijspp.2013-0547

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Fernández-Gonzalo R, Lundberg TR, Álvarez-Álvarez L, Paz JA. Muscle damage responses and adaptations to eccentric-overload resistance exercise in men and women. Eur J Appl Physiol. 2014;114(5):10751084. doi:10.1007/s00421-014-2836-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Romero-Rodríguez D, Gual G, Tesch PA. Efficacy of an inertial resistance training paradigm in the treatment of patellar tendinopathy in athletes: a case-series study. Phys Ther Sport. 2011;12(1):4348. doi:10.1016/j.ptsp.2010.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Norrbrand L, Fluckey JD, Pozzo M, Tesch PA. Resistance training using eccentric overload induces early adaptations in skeletal muscle size. Eur J Appl Physiol. 2008;102(3):271281. PubMed doi:10.1007/s00421-007-0583-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Tous-Fajardo J, Gonzalo-Skok O, Arjol-Serrano JL, Tesch PA. Enhancing change-of-direction speed in soccer players by functional inertial eccentric overload and vibration training. Int J Sports Physiol Perform. 2016;11:6673. doi:10.1123/ijspp.2015-0010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Maroto-Izquierdo S, García-López D, Fernández-Gonzalo R, Moreira OC, González-Gallego J, de Paz JA. Skeletal muscle functional and structural adaptations after eccentric overload flywheel resistance training: a systematic review and meta-analysis. J Sci Med Sport. 2017;20(10):943951. PubMed doi:10.1016/j.jsams.2017.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gual G, Fort-Vanmeerhaeghe A, Romero-Rodríguez D, Tesch PA. Effects of in-season inertial resistance training with eccentric overload in a sports population at risk for patellar tendinopathy. J Strength Cond Res. 2016;30(7):18341842. PubMed doi:10.1519/JSC.0000000000001286

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Sabido R, Hernández-Davó JL, Botella J, Navarro A, Tous-Fajardo J. Effects of adding a weekly eccentric-overload training session on strength and athletic performance in team-handball players. Eur J Sport Sci. 2017;17(5):530538. PubMed doi:10.1080/17461391.2017.1282046

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Tesch PA, Fernández-Gonzalo R, Lundberg T. Clinical applications of iso-inertial eccentric-overload (YoYo™) resistance training. Front Physiol. 2017;8:241. PubMed doi:10.3389/fphys.2017.00241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Tous-Fajardo J, Maldonado RA, Quintana JM, Pozzo M, Tesch PA. The flywheel leg curl machine: offering eccentric overload for hamstring development. Int J Sports Physiol Perform. 2006;1(3):293298.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Martínez-Aranda LM, Fernández-Gonzalo R. Effects of inertial setting on power, force, work and eccentric overload during flywheel resistance exercise in women and men. J Strength Cond Res. 2016;31(6):16531661. doi:10.1519/JSC.0000000000001635

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Maroto-Izquierdo S, García-López D, de Paz JA. Functional and muscle-size effects of flywheel resistance training with eccentric-overload in professional handball players. J Hum Kinetics. 2017;60(1):133143. doi:10.1515/hukin-2017-0096

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Gonzalo-Skok O, Tous-Fajardo J, Arjol-Serrano JL, Suarez-Arrones L, Casajús JA, Mendez-Villanueva A. Low-volume repeated maximal power training improves repeated sprint ability and horizontal jumping performance in elite young basketball players. Int J Sports Physiol Perform. 2016;11(4):464473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Pareja-Blanco F, Sánchez-Medina L, Suarez-Arronez L, Gonzalez-Badillo JJ. Effects of velocity loss during resistance training on performance in professional soccer players. Int J Sports Physiol Perform. 2016;6:124.

    • Search Google Scholar
    • Export Citation
  • 20.

    Gonzalo-Skok O, Tous-Fajardo J, Suarez-Arronez L, Arjol-Serrano JL, Casajús JA, Méndez-Villanueva A. Single-leg power output and between-limbs imbalances in team-sport players: unilateral versus bilateral combined resistance training. Int J Sports Physiol Perform. 2017;12(1):106114. doi:10.1123/ijspp.2015-0743

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: biological basis of maximal power production. Sports Med. 2011;41:1738. PubMed doi:10.2165/11537690-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Norrbrand L, Pozzo M, Tesch PA. Flywheel resistance training calls for greater eccentric muscle activation than weight training. Eur J Appl Physiol. 2010;110:9971005. doi:10.1007/s00421-010-1575-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Munro BH, Visintainer MA, Page EB. Statistical Methods for Health Care Research. Philadelphia, PA: J.B. Lippincott; 1986.

  • 24.

    Stokes M. Reliability and repeatability of methods for measuring muscle in physiotherapy. Physiother Theory Pract. 1985;1:7176. doi:10.3109/09593988509163853

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(3):313. doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Ritti-Dias RM, Avelar A, Salvador EP, Cyrino ES. Influence of previous experience on resistance training on reliability of one-repetition maximum test. J Strength Cond Res. 2011;25(5):14181422. PubMed doi:10.1519/JSC.0b013e3181d67c4b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: training considerations for improving maximal power production. Sports Med. 2011;41(2):125146. PubMed doi:10.2165/11538500-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Rhea MR, Kenn JG, Peterson MD, et al. Joint-angle specific strength adaptations influence improvements in power in highly trained athletes. Hum Movement. 2016;17(1):4349. doi:10.1515/humo-2016-0006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Sánchez-Medina L, González-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc. 2011;43(9):17251734. PubMed doi:10.1249/MSS.0b013e318213f880

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hester GM, Conchola EC, Thiele RM, De Freitas JM. Power output during a high-volume power-oriented back squat protocol. J Strength Cond Res. 2014;28(10):28012805. PubMed doi:10.1519/JSC.0000000000000484

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Gonzalo-Skok O, Tous-Fajardo J, Valero-Campos C, et al. Eccentric overload training in team-sports functional performance: constant bilateral vertical vs. variable unilateral multidirectional movements. Int J Sports Physiol Perform. 2017;12(7):951958. PubMed doi:10.1123/ijspp.2016-0251

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5035 1889 77
Full Text Views 83 25 2
PDF Downloads 82 23 0