Sprint Running Performance and Technique Changes in Athletes During Periodized Training: An Elite Training Group Case Study

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Ian N. Bezodis
Search for other papers by Ian N. Bezodis in
Current site
Google Scholar
PubMed
Close
,
David G. Kerwin
Search for other papers by David G. Kerwin in
Current site
Google Scholar
PubMed
Close
,
Stephen-Mark Cooper
Search for other papers by Stephen-Mark Cooper in
Current site
Google Scholar
PubMed
Close
, and
Aki I.T. Salo
Search for other papers by Aki I.T. Salo in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To understand how training periodization influences sprint performance and key step characteristics over an extended training period in an elite sprint training group. Methods: Four sprinters were studied during 5 mo of training. Step velocities, step lengths, and step frequencies were measured from video of the maximum velocity phase of training sprints. Bootstrapped mean values were calculated for each athlete for each session, and 139 within-athlete, between-sessions comparisons were made with a repeated-measures analysis of variance. Results: As training progressed, a link in the changes in velocity and step frequency was maintained. There were 71 between-sessions comparisons with a change in step velocity yielding at least a large effect size (>1.2), of which 73% had a correspondingly large change in step frequency in the same direction. Within-athlete mean session step length remained relatively constant throughout. Reductions in step velocity and frequency occurred during training phases of high-volume lifting and running, with subsequent increases in step velocity and frequency happening during phases of low-volume lifting and high-intensity sprint work. Conclusions: The importance of step frequency over step length to the changes in performance within a training year was clearly evident for the sprinters studied. Understanding the magnitudes and timings of these changes in relation to the training program is important for coaches and athletes. The underpinning neuromuscular mechanisms require further investigation but are likely explained by an increase in force-producing capability followed by an increase in the ability to produce that force rapidly.

Bezodis, Kerwin, and Cooper are with the Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom. Salo is with Sport and Exercise Science, University of Bath, Bath, United Kingdom.

Bezodis (ibezodis@cardiffmet.ac.uk) is corresponding author.

Supplementary Materials

    • Supplemental Materials (PDF 638 KB)
  • Collapse
  • Expand
  • 1.

    Debaere S, Jonkers I, Delecluse C. The contribution of step characteristics to sprint running performance in high-level male and female athletes. J Strength Cond Res. 2013;27(1):116124. PubMed ID: 22395270 doi:10.1519/JSC.0b013e31825183ef

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Nagahara R, Naito H, Morin JB, Zushi K. Association of acceleration with spatiotemporal variables in maximal sprinting. Int J Sports Med. 2014;35(09):755761. PubMed ID: 24577864 doi:10.1055/s-0033-1363252

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112(11):39213930. PubMed ID: 22422028 doi:10.1007/s00421-012-2379-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Mero A, Komi PV. Effects of supramaximal velocity on biomechanical variables in sprinting. Int J Sport Biomech. 1985;1:240252. doi:10.1123/ijsb.1.3.240

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Gajer B, Thépaut-Mathieu C, Lehénaff D. Evolution of stride and amplitude during course of the 100 m event in athletics. New Stud Athl. 1999;14(1):4350.

    • Search Google Scholar
    • Export Citation
  • 6.

    Mann RV, Herman J. Kinematic analysis of olympic sprint performance: men’s 200 meters. Int J Sport Biomech. 1985;1:151162 doi:10.1123/ijsb.1.2.151

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Otsuka M, Kawahara T, Isaka T. Acute response of well-trained sprinters to a 100-m race: higher sprinting velocity achieved with increased step rate compared with speed training. J Strength Cond Res. 2016;30(3):635642. PubMed ID: 26907837 doi:10.1519/JSC.0000000000001162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hunter JP, Marshall RN, McNair PJ. Interaction of step length and step rate during sprint running. Med Sci Sports Exerc. 2004;36(2):261271. PubMed ID: 14767249 doi:10.1249/01.MSS.0000113664.15777.53

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Salo AIT, Bezodis IN, Batterham AM, Kerwin DG. Elite sprinting: are athletes individually step-frequency or step-length reliant? Med Sci Sports Exerc. 2011;43(6):10551062. PubMed ID: 20980924 doi:10.1249/MSS.0b013e318201f6f8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bolger R, Lyons M, Harrison AJ, Kenny IC. Sprinting performance and resistance-based training interventions: a systematic review. J Strength Cond Res. 2015;29(4):11461156. PubMed ID: 25268287 doi:10.1519/JSC.0000000000000720

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    DeWeese BH, Hornsby G, Stone M, Stone MH. The training process: planning for strength–power training in track and field. Part 2: practical and applied aspects. J Sport Health Sci. 2015;4(4):318324 doi:10.1016/j.jshs.2015.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Coutts AJ. Working fast and working slow: the benefits of embedding research in high-performance sport. Int J Sports Physiol Perform. 2016;11(1):12. PubMed ID: 26752203 doi:10.1123/IJSPP.2015-0781

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kearney JT. Sport performance enhancement: design and analysis of research. Med Sci Sports Exerc. 1999;31(5):755756. PubMed ID: 10331899 doi:10.1097/00005768-199905000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Rumpf MC, Lockie RG, Cronin JB, Jalilvand F. Effect of different sprint training methods on sprint performance over various distances: a brief review. J Strength Cond Res. 2016;30(6):17671785. PubMed ID: 26492101 doi:10.1519/JSC.0000000000001245

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Blazevich AJ, Jenkins DG. Effect of the movement speed of resistance training exercises on sprint and strength performance in concurrently training elite junior sprinters. J Sports Sci. 2002;20(12):981990. PubMed ID: 12477008 doi:10.1080/026404102321011742

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 2–training considerations for improving maximal power production. Sports Med. 2011;41(2):125146. PubMed ID: 21244105 doi:10.2165/11538500-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Walton J. Close-Range Cine-Photogrammetry: A Generalised Technique for Quantifying Gross Human Motion [unpublished doctoral thesis]. State College, PA: Pennsylvania State University; 1981.

    • Search Google Scholar
    • Export Citation
  • 18.

    de Leva P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech. 1996;29(9):12231230. PubMed ID: 8872282 doi:10.1016/0021-9290(95)00178-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Winter DA. Biomechanics and Motor Control of Human Movement. 3rd ed. Hoboken, NJ: John Wiley and Sons, Inc; 2005.

  • 20.

    Bezodis IN, Kerwin DG, Salo AIT. Lower-limb mechanics during the support phase of maximum-velocity sprint running. Med Sci Sports Exerc. 2008;40(4):707715. PubMed ID: 18317373 doi:10.1249/MSS.0b013e318162d162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Efron B, Tibshirani R. An Introduction to the Bootstrap. London, UK: Chapman Hall; 1994.

  • 22.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Weyand PG, Bundle MW. Point: artificial limbs do make artificially fast running speeds possible. J Appl Physiol. 2010;108(4):10111012. PubMed ID: 20368385 doi:10.1152/japplphysiol.01238.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Moir G, Sanders R, Button C, Glaister M. The effect of periodized resistance training on accelerative sprint performance. Sports Biomech. 2007;6(3):285300. PubMed ID: 17933193 doi:10.1080/14763140701489793

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ross A, Leveritt M. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports Med. 2001;31(15):10631082. PubMed ID: 11735686 doi:10.2165/00007256-200131150-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Andersen LL, Andersen JL, Zebis MK, Aagaard P. Early and late rate of force development: differential adaptive responses to resistance training? Scand J Med Sci Sports. 2010;20(1):162169. doi:10.1111/j.1600-0838.2009.00933.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Holtermann A, Roeleveld K, Vereijken B, Ettema G. The effect of rate of force development on maximal force production: acute and training-related aspects. Eur J Appl Physiol. 2007;99(6):605613. PubMed ID: 17219170 doi:10.1007/s00421-006-0380-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Weyand PG, Sternlight DB, Bellizzi MJ, Wright S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol. 2000;89(5):19911999. PubMed ID: 11053354 doi:10.1152/jappl.2000.89.5.1991

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Alkjaer T, Meyland J, Raffalt PC, Lundbye‐Jensen J, Simonsen EB. Neuromuscular adaptations to 4 weeks of intensive drop jump training in well‐trained athletes. Physiol Rep. 2013;1(5):e00099. PubMed ID: 24303171 doi:10.1002/phy2.99

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Macaluso A, De Vito G. Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol. 2004;91(4):450472. PubMed ID: 14639481 doi:10.1007/s00421-003-0991-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4557 1347 95
Full Text Views 129 14 1
PDF Downloads 111 17 2