The Effects of Low-Volume, High-Intensity Training on Performance Parameters in Competitive Youth Swimmers

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Frank Nugent
Search for other papers by Frank Nugent in
Current site
Google Scholar
PubMed
Close
,
Thomas Comyns
Search for other papers by Thomas Comyns in
Current site
Google Scholar
PubMed
Close
,
Alan Nevill
Search for other papers by Alan Nevill in
Current site
Google Scholar
PubMed
Close
, and
Giles D. Warrington
Search for other papers by Giles D. Warrington in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To assess the effects of a 7-wk low-volume, high-intensity training (HIT) intervention on performance parameters in national-level youth swimmers. Methods: Sixteen swimmers (age 15.8 [1.0] y, age at peak height velocity 12.9 [0.6] y, 100-m freestyle 61.4 [4.1] s) were randomly assigned to an HIT group or a low-intensity, high-volume training (HVT) group that acted as a control. The HIT group reduced their weekly training volume of zone 1 (low-intensity) training by 50% but increased zone 3 (high-intensity) training by 200%. The HVT group performed training as normal. Pretest to posttest measures of physiological performance (velocity at 2.5- and 4-mM blood lactate [velocity2.5mM and velocity4mM] and peak blood lactate), biomechanical performance (stroke rate, stroke length [SL], and stroke index [SI] over a 50- and 400-m freestyle), and swimming performance (50-, 200-, and 400-m freestyle) were assessed. Results: There were no significant 3-way interactions between time, group, and sex for all performance parameters (P > .05). There was a significant 2-way interaction between time and group for velocity4mM (P = .02, ηp2=.40), SL50 (P = .03, ηp2=.37), and SI50 (P = .03, ηp2=.39). Velocity4mM decreased in the HIT group but increased in the HVT group while SL50 and SI50 decreased in the HVT group. Conclusions: A 7-wk HIT intervention was neither beneficial nor detrimental to performance parameters; however, the HIT group completed 6 h (17.0 km) of swimming per week compared with 12 h (33.4 km) per week for the HVT group.

Nugent, Comyns, and Warrington are with the Dept of Physical Education and Sport Sciences, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland. Nevill is with the Inst of Sport and Human Sciences, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, United Kingdom.

Nugent (fnugent89@gmail.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Seiler S, Tønnessen E. Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience. 2009;13:3253.

    • Search Google Scholar
    • Export Citation
  • 2.

    Nugent FJ, Comyns TM, Warrington GD. Quality versus quantity debate in swimming: perceptions and training practices of expert swimming coaches. J Hum Kinet. 2017;57:147158. PubMed ID: 28713467 doi:10.1515/hukin-2017-0056

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Sein ML, Walton J, Linklater J, et al. Shoulder pain in elite swimmers: primarily due to swim-volume-induced supraspinatus tendinopathy. Br J Sports Med. 2010;44(2):105113. PubMed ID: 18463295 doi:10.1136/bjsm.2008.047282

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Jürimäe J, Haljaste K, Cicchella A, et al. Analysis of swimming performance from physical, physiological, and biomechanical parameters in young swimmers. Pediatr Exerc Sci. 2007;19(1):7081. doi:10.1123/pes.19.1.70

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Barbosa TM, Costa M, Marinho DA, Coelho J, Moreira M, Silva AJ. Modeling the links between young swimmers’ performance: energetic and biomechanic profiles. Pediatr Exerc Sci. 2010;22(3):379391. PubMed ID: 20814034 doi:10.1123/pes.22.3.379

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mezzaroba PV, Machado FA. Effect of age, anthropometry, and distance in stroke parameters of young swimmers. Int J Sports Physiol Perform. 2014;9(4):702706. PubMed ID: 24231272 doi:10.1123/ijspp.2013-0278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Greyson I, Kelly S, Peyrebrune M, Furniss B. Interpreting and implementing the long-term athlete development model: English swimming coaches’ views on the (swimming) LTAD in practice. A commentary. Int J Sports Sci Coach. 2010;5(3):403406. doi:10.1260/1747-9541.5.3.403

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Nugent FJ, Comyns TM, Burrows E, Warrington GD. Effects of low-volume, high-intensity training on performance in competitive swimmers: a systematic review. J Strength Cond Res. 2016;31(3):837847. doi:10.1519/JSC.0000000000001583

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Faude O, Meyer T, Scharhag J, Weins F, Urhausen A, Kindermann W. Volume vs. intensity in the training of competitive swimmers. Int J Sports Med. 2008;29(11):906912. PubMed ID: 18418808 doi:10.1055/s-2008-1038377

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Stoggl TL, Sperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol. 2015;6:295. doi:10.3389/fphys.2015.00295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Stott MJ. A new way to train. In: B Ingram, ed. Swimming World Magazine. Vol 55. Phoenix, AZ: Sports Publications Inc; 2014:2529.

  • 12.

    Beliaev S. Ultra-short race-pace training—breakthrough or a phantom from the past? In: W Goldsmith, ed. Swimming Technique Magazine. Vol 42. Phoenix, AZ: Sports Publications Inc; 2015:57.

    • Search Google Scholar
    • Export Citation
  • 13.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276291. PubMed ID: 20861519 doi:10.1123/ijspp.5.3.276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hydren JR, Cohen BS. Current scientific evidence for a polarized cardiovascular endurance training model. J Strength Cond Res. 2015;29(12):35233530. PubMed ID: 26595137 doi:10.1519/JSC.0000000000001197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Barbosa TM, Fernandes R, Keskinen KL, et al. Evaluation of the energy expenditure in competitive swimming strokes. Int J Sports Med. 2006;27(11):894899. PubMed ID: 16612740 doi:10.1055/s-2006-923776

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Rodríguez FA, Lätt E, Jürimäe J, et al. VO2 kinetics in all-out arm stroke, leg kick and whole stroke front crawl 100-m swimming. Int J Sports Med. 2016;37(3):191196. PubMed ID: 26575404 doi:10.1055/s-0035-1554695

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Stoggl T, Sperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol. 2014;5:33. doi:10.3389/fphys.2014.00033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kilen A, Larsson TH, Jørgensen M, Johansen L, Jørgensen S, Nordsborg NB. Effects of 12 weeks high-intensity & reduced-volume training in elite athletes. PLoS ONE. 2014;9(4):95025. doi:10.1371/journal.pone.0095025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Pugliese L, Porcelli S, Bonato M, et al. Effects of manipulating volume and intensity training in masters swimmers. Int J Sports Physiol Perform. 2015;10(7):907912. PubMed ID: 25710182 doi:10.1123/ijspp.2014-0171

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Pyne DB, Lee H, Swanwick KM. Monitoring the lactate threshold in world-ranked swimmers. Med Sci Sports Exerc. 2001;33(2):291297. PubMed ID: 11224820 doi:10.1097/00005768-200102000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 22.

    Newell J, Higgins D, Madden N, et al. Software for calculating blood lactate endurance markers. J Sports Sci. 2007;25(12):14031409. PubMed ID: 17786693 doi:10.1080/02640410601128922

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Turner AP, Smith T, Coleman GS. Use of an audio-paced incremental swimming test in young national-level swimmers. Int J Sports Physiol Perform. 2008;3(1):6879. PubMed ID: 19193954 doi:10.1123/ijspp.3.1.68

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Smith DJ, Norris SR, Hogg JM. Performance evaluation of swimmers: scientific tools. Sports Med. 2002;32(9):539554. PubMed ID: 12096928 doi:10.2165/00007256-200232090-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Bassan NM, Cesar TE, Denadai BS, Greco CC. Relationship between fatigue and changes in swim technique during an exhaustive swim exercise. Int J Sports Physiol Perform. 2016;11(1):3339. PubMed ID: 25848804 doi:10.1123/ijspp.2014-0310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cohen J. Statistical Power Analysis for the Behavioural Sciences. 2nd ed. Hillsdale, NJ: Erlbaum Associates; 1988.

  • 27.

    Sperlich B, Zinner C, Heilemann I, Kjendlie PL, Holmberg HC, Mester J. High-intensity interval training improves VO2peak, maximal lactate accumulation, time trial and competition performance in 9–11-year-old swimmers. Eur J Appl Physiol. 2010;110(5):10291036. PubMed ID: 20683609 doi:10.1007/s00421-010-1586-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Zamparo P, Capelli C, Cautero M, Di Nino A. Energy cost of front-crawl swimming at supra-maximal speeds and underwater torque in young swimmers. Eur J Appl Physiol. 2000;83(6):487491. PubMed ID: 11192054 doi:10.1007/s004210000318

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002;32(1):5373. PubMed ID: 11772161 doi:10.2165/00007256-200232010-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Tor E, Ball K, Pease D, Hopkins W. A comparison between single and multi-camera swimming race analysis systems. Paper presented at: 30th Annual Conference of Biomechanics in Sports; 2012. Melbourne, Australia.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4115 1848 144
Full Text Views 57 7 1
PDF Downloads 46 8 4